scholarly journals A bipartite DNA-binding domain in yeast Reb1p.

1993 ◽  
Vol 13 (2) ◽  
pp. 1173-1182 ◽  
Author(s):  
B E Morrow ◽  
Q Ju ◽  
J R Warner

The REB1 gene encodes a DNA-binding protein (Reb1p) that is essential for growth of the yeast Saccharomyces cerevisiae. Reb1p binds to sites within transcriptional control regions of genes transcribed by either RNA polymerase I or RNA polymerase II. The sequence of REB1 predicts a protein of 809 amino acids. To define the DNA-binding domain of Reb1p, a series of 5' and 3' deletions within the coding region was constructed in a bacterial expression vector. Analysis of the truncated Reb1p proteins revealed that nearly 400 amino acids of the C-terminal portion of the protein are required for maximal DNA-binding activity. To further define the important structural features of Reb1p, the REB1 homolog from a related yeast, Kluyveromyces lactis, was cloned by genetic complementation. The K. lactis REB1 gene supports active growth of an S. cerevisiae strain whose REB1 gene has been deleted. The Reb1p proteins of the two organisms generate almost identical footprints on DNA, yet the K. lactis REB1 gene encodes a polypeptide of only 595 amino acids. Comparison of the two Reb1p sequences revealed that within the region necessary for the binding of Reb1p to DNA were two long regions of nearly perfect identity, separated in the S. cerevisiae Reb1p by nearly 150 amino acids but in the K. lactis Reb1p by only 40 amino acids. The first includes a 105-amino-acid region related to the DNA-binding domain of the myb oncoprotein; the second bears a faint resemblance to myb. The hypothesis that the DNA-binding domain of Reb1p is formed from these two conserved regions was confirmed by deletion of as many as 90 amino acids between them, with little effect on the DNA-binding ability of the resultant protein. We suggest that the DNA-binding domain of Reb1p is made up of two myb-like regions that, unlike myb itself, are separated by as many as 150 amino acids. Since Reb1p protects only 15 to 20 nucleotides in a chemical or enzymatic footprint assay, the protein must fold such that the two components of the binding site are adjacent.

1993 ◽  
Vol 13 (2) ◽  
pp. 1173-1182
Author(s):  
B E Morrow ◽  
Q Ju ◽  
J R Warner

The REB1 gene encodes a DNA-binding protein (Reb1p) that is essential for growth of the yeast Saccharomyces cerevisiae. Reb1p binds to sites within transcriptional control regions of genes transcribed by either RNA polymerase I or RNA polymerase II. The sequence of REB1 predicts a protein of 809 amino acids. To define the DNA-binding domain of Reb1p, a series of 5' and 3' deletions within the coding region was constructed in a bacterial expression vector. Analysis of the truncated Reb1p proteins revealed that nearly 400 amino acids of the C-terminal portion of the protein are required for maximal DNA-binding activity. To further define the important structural features of Reb1p, the REB1 homolog from a related yeast, Kluyveromyces lactis, was cloned by genetic complementation. The K. lactis REB1 gene supports active growth of an S. cerevisiae strain whose REB1 gene has been deleted. The Reb1p proteins of the two organisms generate almost identical footprints on DNA, yet the K. lactis REB1 gene encodes a polypeptide of only 595 amino acids. Comparison of the two Reb1p sequences revealed that within the region necessary for the binding of Reb1p to DNA were two long regions of nearly perfect identity, separated in the S. cerevisiae Reb1p by nearly 150 amino acids but in the K. lactis Reb1p by only 40 amino acids. The first includes a 105-amino-acid region related to the DNA-binding domain of the myb oncoprotein; the second bears a faint resemblance to myb. The hypothesis that the DNA-binding domain of Reb1p is formed from these two conserved regions was confirmed by deletion of as many as 90 amino acids between them, with little effect on the DNA-binding ability of the resultant protein. We suggest that the DNA-binding domain of Reb1p is made up of two myb-like regions that, unlike myb itself, are separated by as many as 150 amino acids. Since Reb1p protects only 15 to 20 nucleotides in a chemical or enzymatic footprint assay, the protein must fold such that the two components of the binding site are adjacent.


1993 ◽  
Vol 13 (12) ◽  
pp. 7496-7506
Author(s):  
X Mao ◽  
M K Darby

Transcription of the Xenopus 5S RNA gene by RNA polymerase III requires the gene-specific factor TFIIIA. To identify domains within TFIIIA that are essential for transcriptional activation, we have expressed C-terminal deletion, substitution, and insertion mutants of TFIIIA in bacteria as fusions with maltose-binding protein (MBP). The MBP-TFIIIA fusion protein specifically binds to the 5S RNA gene internal control region and complements transcription in a TFIIIA-depleted oocyte nuclear extract. Random, cassette-mediated mutagenesis of the carboxyl region of TFIIIA, which is not required for promoter binding, has defined a 14-amino-acid region that is critical for transcriptional activation. In contrast to activators of RNA polymerase II, the activity of the TFIIIA activation domain is strikingly sensitive to its position relative to the DNA-binding domain. When the eight amino acids that separate the transcription-activating domain from the last zinc finger are deleted, transcriptional activity is lost. Surprisingly, diverse amino acids can replace these eight amino acids with restoration of full transcriptional activity, suggesting that the length and not the sequence of this region is important. Insertion of amino acids between the zinc finger region and the transcription-activating domain causes a reduction in transcription proportional to the number of amino acids introduced. We propose that to function, the transcription-activating domain of TFIIIA must be correctly positioned at a minimum distance from the DNA-binding domain.


1991 ◽  
Vol 11 (12) ◽  
pp. 5910-5918 ◽  
Author(s):  
Y L Yuan ◽  
S Fields

The STE12 protein of the yeast Saccharomyces cerevisiae binds to the pheromone response element (PRE) present in the upstream region of genes whose transcription is induced by pheromone. Using DNase I footprinting assays with bacterially made STE12 fragments, we localized the DNA-binding domain to 164 amino acids near the amino terminus. Footprinting of oligonucleotide-derived sequences containing one PRE, or two PREs in head-to-tail or tail-to-tail orientation, showed that the N-terminal 215 amino acids of STE12 has similar binding affinity to either of the dimer sites and a binding affinity 5- to 10-fold lower for the monomer site. This binding cooperativity was also evident on a fragment from the MFA2 gene, which encodes the a-factor pheromone. On this fragment, the 215-amino-acid STE12 fragment protected both a consensus PRE as well as a degenerate PRE containing an additional residue. Mutation of the degenerate site led to a 5- to 10-fold decrease in binding; mutation of the consensus site led to a 25-fold decrease in binding. The ability of PREs to function as pheromone-inducible upstream activation sequences in yeast correlated with their ability to bind the STE12 domain in vitro. The sequence of the STE12 DNA-binding domain contains similarities to the homeodomain, although it is highly diverged from other known examples of this motif. Moreover, the alignment between STE12 and the homeodomain postulates loops after both the putative helix 1 and helix 2 of the STE12 sequence.


1993 ◽  
Vol 13 (12) ◽  
pp. 7496-7506 ◽  
Author(s):  
X Mao ◽  
M K Darby

Transcription of the Xenopus 5S RNA gene by RNA polymerase III requires the gene-specific factor TFIIIA. To identify domains within TFIIIA that are essential for transcriptional activation, we have expressed C-terminal deletion, substitution, and insertion mutants of TFIIIA in bacteria as fusions with maltose-binding protein (MBP). The MBP-TFIIIA fusion protein specifically binds to the 5S RNA gene internal control region and complements transcription in a TFIIIA-depleted oocyte nuclear extract. Random, cassette-mediated mutagenesis of the carboxyl region of TFIIIA, which is not required for promoter binding, has defined a 14-amino-acid region that is critical for transcriptional activation. In contrast to activators of RNA polymerase II, the activity of the TFIIIA activation domain is strikingly sensitive to its position relative to the DNA-binding domain. When the eight amino acids that separate the transcription-activating domain from the last zinc finger are deleted, transcriptional activity is lost. Surprisingly, diverse amino acids can replace these eight amino acids with restoration of full transcriptional activity, suggesting that the length and not the sequence of this region is important. Insertion of amino acids between the zinc finger region and the transcription-activating domain causes a reduction in transcription proportional to the number of amino acids introduced. We propose that to function, the transcription-activating domain of TFIIIA must be correctly positioned at a minimum distance from the DNA-binding domain.


1991 ◽  
Vol 11 (12) ◽  
pp. 5910-5918 ◽  
Author(s):  
Y L Yuan ◽  
S Fields

The STE12 protein of the yeast Saccharomyces cerevisiae binds to the pheromone response element (PRE) present in the upstream region of genes whose transcription is induced by pheromone. Using DNase I footprinting assays with bacterially made STE12 fragments, we localized the DNA-binding domain to 164 amino acids near the amino terminus. Footprinting of oligonucleotide-derived sequences containing one PRE, or two PREs in head-to-tail or tail-to-tail orientation, showed that the N-terminal 215 amino acids of STE12 has similar binding affinity to either of the dimer sites and a binding affinity 5- to 10-fold lower for the monomer site. This binding cooperativity was also evident on a fragment from the MFA2 gene, which encodes the a-factor pheromone. On this fragment, the 215-amino-acid STE12 fragment protected both a consensus PRE as well as a degenerate PRE containing an additional residue. Mutation of the degenerate site led to a 5- to 10-fold decrease in binding; mutation of the consensus site led to a 25-fold decrease in binding. The ability of PREs to function as pheromone-inducible upstream activation sequences in yeast correlated with their ability to bind the STE12 domain in vitro. The sequence of the STE12 DNA-binding domain contains similarities to the homeodomain, although it is highly diverged from other known examples of this motif. Moreover, the alignment between STE12 and the homeodomain postulates loops after both the putative helix 1 and helix 2 of the STE12 sequence.


1990 ◽  
Vol 10 (10) ◽  
pp. 5128-5137 ◽  
Author(s):  
M M Witte ◽  
R C Dickson

LAC9 is a DNA-binding protein that regulates transcription of the lactose-galactose regulon in Kluyveromyces lactis. The DNA-binding domain is composed of a zinc finger and nearby amino acids (M. M. Witte and R. C. Dickson, Mol. Cell. Biol. 8:3726-3733, 1988). The single zinc finger appears to be structurally related to the zinc finger of many other fungal transcription activator proteins that contain positively charged residues and six conserved cysteines with the general form Cys-Xaa2-Cys-Xaa6-Cys-Xaa6-9-Cys-Xaa2-Cys-Xaa 6-Cys, where Xaan indicates a stretch of the indicated number of any amino acids (R. M. Evans and S. M. Hollenberg, Cell 52:1-3, 1988). The function(s) of the zinc finger and other amino acids in DNA-binding remains unclear. To determine which portion of the LAC9 DNA-binding domain mediates sequence recognition, we replaced the C6 zinc finger, amino acids adjacent to the carboxyl side of the zinc finger, or both with the analogous region from the Saccharomyces cerevisiae PPR1 or LEU3 protein. A chimeric LAC9 protein, LAC9(PPR1 34-61), carrying only the PPR1 zinc finger, retained the DNA-binding specificity of LAC9. However, LAC9(PPR1 34-75), carrying the PPR1 zinc finger and 14 amino acids on the carboxyl side of the zinc finger, gained the DNA-binding specificity of PPR1, indicating that these 14 amino acids are necessary for specific DNA binding. Our data show that C6 fingers can substitute for each other and allow DNA binding, but binding affinity is reduced. Thus, in a qualitative sense C6 fingers perform a similar function(s). However, the high-affinity binding required by natural C6 finger proteins demands a unique C6 finger with a specific amino acid sequence. This requirement may reflect conformational constraints, including interactions between the C6 finger and the carboxyl-adjacent amino acids; alternatively or in addition, it may indicate that unique, nonconserved amino acid residues in zinc fingers make sequence-specifying or stabilizing contacts with DNA.


1999 ◽  
Vol 19 (4) ◽  
pp. 2880-2886 ◽  
Author(s):  
Asish K. Ghosh ◽  
Robert Steele ◽  
Ratna B. Ray

ABSTRACT We initially identified c-myc promoter binding protein 1 (MBP-1), which negatively regulates c-myc promoter activity, from a human cervical carcinoma cell expression library. Subsequent studies on the biological role of MBP-1 demonstrated induction of cell death in fibroblasts and loss of anchorage-independent growth, reduced invasive ability, and tumorigenicity of human breast carcinoma cells. To investigate the potential role of MBP-1 as a transcriptional regulator, a chimeric protein containing MBP-1 fused to the DNA binding domain of the yeast transactivator factor GAL4 was constructed. This fusion protein exhibited repressor activity on the herpes simplex virus thymidine kinase promoter via upstream GAL4 DNA binding sites. Structure-function analysis of mutant MBP-1 in the context of the GAL4 DNA binding domain revealed that MBP-1 transcriptional repressor domains are located in the N terminus (amino acids 1 to 47) and C terminus (amino acids 232 to 338), whereas the activation domain lies in the middle (amino acids 140 to 244). The N-terminal domain exhibited stronger transcriptional repressor activity than the C-terminal region. When the N-terminal repressor domain was transferred to a potent activator, transcription was strongly inhibited. Both of the repressor domains contained hydrophobic regions and had an LXVXL motif in common. Site-directed mutagenesis in the repressor domains indicated that the leucine residues in the LXVXL motif are required for transcriptional repression. Mutation of the leucine residues in the common motif of MBP-1 also abrogated the repressor activity on the c-mycpromoter. In addition, the leucine mutant forms of MBP-1 failed to suppress cell growth in fibroblasts like wild-type MBP-1. Taken together, our results indicate that MBP-1 is a complex cellular factor containing multiple transcriptional regulatory domains that play an important role in cell growth regulation.


1995 ◽  
Vol 2 (10) ◽  
pp. 898-905 ◽  
Author(s):  
Kevin H. Gardner ◽  
Stephen F. Anderson ◽  
Joseph E. Coleman

Sign in / Sign up

Export Citation Format

Share Document