A functional insulin-like growth factor I receptor is required for the mitogenic and transforming activities of the epidermal growth factor receptor

1994 ◽  
Vol 14 (7) ◽  
pp. 4588-4595
Author(s):  
D Coppola ◽  
A Ferber ◽  
M Miura ◽  
C Sell ◽  
C D'Ambrosio ◽  
...  

When wild-type mouse embryo cells are stably transfected with a plasmid constitutively overexpressing the epidermal growth factor (EGF) receptor (EGFR), the resulting cells can grow in serum-free medium supplemented solely with EGF. Supplementation with EGF also induces in these cells the transformed phenotype (growth in soft agar). However, when the same EGFR expression plasmid is introduced and overexpressed in cells derived from littermate embryos in which the insulin-like growth factor I (IGF-I) receptor genes have been disrupted by homologous recombination, the resulting cells are unable to grow or to be transformed by the addition of EGF. Reintroduction into these cells (null for the IGF-I receptor) of a wild-type (but not of a mutant) IGF-I receptor restores EGF-mediated growth and transformation. Our results indicate that at least in mouse embryo fibroblasts, the EGFR requires the presence of a functional IGF-I receptor for its mitogenic and transforming activities.

1994 ◽  
Vol 14 (7) ◽  
pp. 4588-4595 ◽  
Author(s):  
D Coppola ◽  
A Ferber ◽  
M Miura ◽  
C Sell ◽  
C D'Ambrosio ◽  
...  

When wild-type mouse embryo cells are stably transfected with a plasmid constitutively overexpressing the epidermal growth factor (EGF) receptor (EGFR), the resulting cells can grow in serum-free medium supplemented solely with EGF. Supplementation with EGF also induces in these cells the transformed phenotype (growth in soft agar). However, when the same EGFR expression plasmid is introduced and overexpressed in cells derived from littermate embryos in which the insulin-like growth factor I (IGF-I) receptor genes have been disrupted by homologous recombination, the resulting cells are unable to grow or to be transformed by the addition of EGF. Reintroduction into these cells (null for the IGF-I receptor) of a wild-type (but not of a mutant) IGF-I receptor restores EGF-mediated growth and transformation. Our results indicate that at least in mouse embryo fibroblasts, the EGFR requires the presence of a functional IGF-I receptor for its mitogenic and transforming activities.


Development ◽  
1990 ◽  
Vol 110 (1) ◽  
pp. 221-227
Author(s):  
A.N. Corps ◽  
D.R. Brigstock ◽  
C.J. Littlewood ◽  
K.D. Brown

125I-labelled epidermal growth factor (125I-EGF) and 125I-labelled insulin-like growth factor-I (125I-IGF-I) bound to trophoderm cells from pig blastocysts obtained on days 15–19 of pregnancy. Specific binding was detected on freshly isolated cell suspensions and on cells cultured for several days. The binding of 125I-EGF was inhibited by increasing concentrations of EGF, but not by various other growth factors and hormones. Chemical cross-linking of 125I-EGF to its receptors using disuccinimidyl suberate (DSS) revealed a radiolabelled band of relative molecular mass 160,000, similar to that identified as the EGF receptor in other cell types. The binding of 125I-IGF-I was inhibited by both IGF-I and insulin, indicating that the receptors were either type I IGF receptors or insulin receptors. Cross-linking of 125I-IGF-I to serum-free supernatants from trophoderm cultures showed that the cells secreted an IGF-binding protein, giving a complex of relative molecular mass about 45,000. The presence of receptors for EGF and IGF/insulin suggests that these factors could be involved in regulating the growth and development of the early blastocyst.


2008 ◽  
Vol 20 (5) ◽  
pp. 570 ◽  
Author(s):  
Jennifer M. Kelly ◽  
David O. Kleemann ◽  
W. M. Chis Maxwell ◽  
Simon K. Walker

To improve the viability of embryos produced in vitro from lamb oocytes, maturation medium was supplemented with insulin-like growth factor-I (IGF-I), epidermal growth factor (EGF), cysteamine, and combinations thereof. Experiment 1 examined the effects of IGF-I supplementation and duration of oocyte maturation on nuclear maturation and embryo development while Experiments 2 and 3 examined the effects of cysteamine and EGF supplementation respectively on embryo development. In Experiment 4, embryo development was examined after maturation with various combinations of supplements. IGF-I supplementation increased cleavage rate (P < 0.05) but its effect on the rate of blastocyst production from original oocytes was variable. Supplementation with IGF-I increased (P < 0.01) the proportion of oocytes at Metaphase II (MII) after 18 h of maturation but not at later times. EGF either alone or combined with IGF-I significantly (P < 0.05) increased cleavage rates compared with other treatment groups but EGF consistently failed to improve blastocyst production rates. Cysteamine improved hatching rates but only when supplemented alone. Maturation of lamb oocytes for 22 h in medium supplemented with 100 ng mL–1 IGF-I and 100 μm cysteamine resulted in the production of 16.0 lambs per donor lamb after embryos were transferred to recipient ewes. It is concluded that EGF and, to a lesser extent, IGF-I, whilst beneficial to initial cleavage, can adversely influence subsequent embryo development. Improvements in embryo viability may more likely be obtained by addressing issues that influence fetal oocyte quality than by modifying in vitro methodology.


1992 ◽  
Vol 175 (4) ◽  
pp. 1081-1090 ◽  
Author(s):  
J F Krane ◽  
A B Gottlieb ◽  
D M Carter ◽  
J G Krueger

Insulin-like growth factor I (IGF-I)/somatomedin C is an important mediator of keratinocyte growth in vitro, and the expression of IGF-I receptors in the basal layer of normal epidermis suggests that this growth pathway may function in the regulation of keratinocyte growth in vivo as well. The pattern of IGF-I receptor expression in normal skin is distinct from that of the epidermal growth factor (EGF) receptor, suggesting that these receptors might be differentially regulated. The purpose of this study was to obtain a better understanding of IGF-I receptor function in the skin by examining IGF-I receptor expression in psoriatic epidermis and in cultured human keratinocytes. Our findings indicate that IGF-I receptor expression is increased in psoriasis as measured by protein tyrosine kinase assays of biopsy extracts and by immunohistochemical staining with an IGF-I receptor-specific monoclonal antibody. Unlike EGF receptor expression, which is also increased in psoriatic epidermis, the pattern of IGF-I receptor expression corresponds closely with the increased size of the keratinocyte proliferative compartment in psoriasis. Biochemical agents that diminish EGF receptor ligand binding (phorbol ester or calcium ionophore treatment) produce opposite effects on the IGF-I receptor. These results suggest that cellular expression and differential regulation of both growth factor receptor systems may control critical aspects of epidermal proliferation or function.


1997 ◽  
Vol 9 (6) ◽  
pp. 571 ◽  
Author(s):  
Christopher G. Grupen ◽  
Hiroshi Nagashima ◽  
Mark B. Nottle

The effects of epidermal growth factor (EGF) and insulin-like growth factor-I (IGF-I) on the in vitro maturation of porcine oocytes were examined. Oocytes obtained from the ovaries of slaughtered prepubertal gilts were matured in modified Medium 199 supplemented with 25% porcine follicular ßuid and gonadotropins, and fertilized in vitro. Oocytes were either xed 16 h later to assess fertilization or cultured for 7 days to assess embryonic development. In Experiment 1, the addition of EGF to maturation medium increased the percentage of meiotically mature oocytes (88% v. 70%; P < 0· 001) but did not affect the proportion of fertilized or cleaved oocytes. Blastocysts derived from oocytes matured in medium supplemented with 10 ng mL-1 EGF had a greater number of cells compared with those of control blastocysts (51·1 ± 5· 1 v. 36·0 ± 3·1; P < 0· 02). In Experiment 2, the addition of IGF-I to maturation medium had no effect on meiotic maturation, fertilization or embryonic development. Our ndings demonstrate that EGF plays an important role in both the meiotic and cytoplasmic maturation of porcine oocytes in vitro.


1989 ◽  
Vol 71 (4) ◽  
pp. 538-544 ◽  
Author(s):  
Masaki Kurihara ◽  
Yoshiharu Tokunaga ◽  
Keisuke Tsutsumi ◽  
Tsutomu Kawaguchi ◽  
Kazuto Shigematsu ◽  
...  

✓ Receptors for insulin-like growth factor I (IGF-I) and epidermal growth factor (EGF) were localized and characterized in eight samples of human meningioma (four fibrous, two meningothelial, and two angioblastic types), using quantitative autoradiographic techniques. Effects of both growth factors on deoxyribonucleic acid (DNA) synthesis in the cultured meningioma cells were examined. High numbers of specific binding sites for both IGF-I and EGF were homogeneously present in tissue sections derived from fibrous and meningothelial types of meningiomas, whereas binding sites for these growth factors were not detectable in adjacent leptomeninges. While relatively large numbers of IGF-I binding sites were located in the wall of the intratumoral vasculature, the number of binding sites in the stromal component was lower in angioblastic-type meningiomas, including a low number of EGF binding sites detected only in the stromal portion. Scatchard analysis revealed the presence of a single class of high-affinity binding sites for both IGF-I and EGF in the meningiomas examined (dissociation constant (Kd) = 0.6 to 2.9 nM, and the maximum number of binding sites (Bmax) = 16 to 80 fmol/mg for IGF-I; and Kd = 0.6 to 4.0 nM, Bmax = 3 to 39 fmol/mg for EGF). Both growth factors increased the synthesis of DNA, in a dose-dependent manner, as measured by 3H-thymidine incorporation. The combination of IGF-I and EGF synergistically stimulated the synthesis of DNA, and the effects seen with 10% fetal bovine serum could be reproduced at a concentration of 10−10 M. These observations can be interpreted to mean that both IGF-I and EGF may be involved in the growth modulation of meningiomas, possibly through paracrine or autocrine mechanisms.


Sign in / Sign up

Export Citation Format

Share Document