scholarly journals Ligand-dependent repression of the erythroid transcription factor GATA-1 by the estrogen receptor.

1995 ◽  
Vol 15 (6) ◽  
pp. 3147-3153 ◽  
Author(s):  
G A Blobel ◽  
C A Sieff ◽  
S H Orkin

High-dose estrogen administration induces anemia in mammals. In chickens, estrogens stimulate outgrowth of bone marrow-derived erythroid progenitor cells and delay their maturation. This delay is associated with down-regulation of many erythroid cell-specific genes, including alpha- and beta-globin, band 3, band 4.1, and the erythroid cell-specific histone H5. We show here that estrogens also reduce the number of erythroid progenitor cells in primary human bone marrow cultures. To address potential mechanisms by which estrogens suppress erythropoiesis, we have examined their effects on GATA-1, an erythroid transcription factor that participates in the regulation of the majority of erythroid cell-specific genes and is necessary for full maturation of erythrocytes. We demonstrate that the transcriptional activity of GATA-1 is strongly repressed by the estrogen receptor (ER) in a ligand-dependent manner and that this repression is reversible in the presence of 4-hydroxytamoxifen. ER-mediated repression of GATA-1 activity occurs on an artificial promoter containing a single GATA-binding site, as well as in the context of an intact promoter which is normally regulated by GATA-1. GATA-1 and ER bind to each other in vitro in the absence of DNA. In coimmunoprecipitation experiments using transfected COS cells, GATA-1 and ER associate in a ligand-dependent manner. Mapping experiments indicate that GATA-1 and the ER form at least two contacts, which involve the finger region and the N-terminal activation domain of GATA-1. We speculate that estrogens exert effects on erythropoiesis by modulating GATA-1 activity through protein-protein interaction with the ER. Interference with GATA-binding proteins may be one mechanism by which steroid hormones modulate cellular differentiation.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1241-1241
Author(s):  
Rebecca Lenzo ◽  
Martha Dua-Awereh ◽  
Martin Carroll ◽  
Susan E. Shetzline

Abstract Abstract 1241 Erythropoiesis is a multi-step process during which hematopoietic stem cells terminally differentiate into red blood cells (RBCs). Erythropoietin (EPO) is the only known cytokine regulator of terminal erythroid differentiation. Previously, we reported that the neuropeptide, neuromedin U (NmU), which interacts with NmU receptor type 1 (NMUR1), functions as a novel extracellular cofactor with EPO to promote the expansion of early erythroblasts, which are CD34−, CD71+, glycophorin A (GlyA)dim(Gambone et al, Blood. 2011). Here, we describe studies to understand the mechanism whereby NmU augments EPO effects on erythroid cell growth. EPO triggers Janus kinase (Jak)-2 dependent activation of signal transducer and activator of transcription (STAT) 5 and phosphatidylinositol 3-kinase (PI3K) to promote the proliferation and/or survival of erythroid progenitor cells. We hypothesized that NmU peptide would cooperate with EPO to promote the proliferation of early erythroblasts through STAT5 and/or PI3K activation. To address this hypothesis, we cultured primary human CD34+ cells in 2-stage liquid culture with IL-3, IL-6, and stem cell factor (SCF) from day 0 to day 6. On day 6, 2U/mL of EPO was added, and the cells were cultured for an additional 5 days to expand erythroid progenitors. On day 11, cells were briefly serum starved and then stimulated with EPO and/or NmU in the absence or presence of a Jak-1/2 inhibitor. Activation of STAT5 and S6, a surrogate marker for PI3K activation, were assessed by phospho-flow in ERY3 (CD34−, CD71+, GlyA+) and ERY4 (CD34−, CD71dim, GlyA+) cells. As expected, EPO alone activated STAT5 and S6 in ERY3 cells only, and the presence of a Jak-1/2 inhibitor diminished STAT5 activation. Interestingly, STAT5 and S6 were activated by NmU peptide alone in ERY3 and ERY4. Surprisingly, in the presence of a Jak-1/2 inhibitor, NmU peptide, which binds to NMUR1 a G-protein coupled receptor, did not activate STAT5 or S6 in ERY3 or 4 cells, suggesting that NmU functions through a JAK kinase in erythroid cells. No additive or synergistic activation of STAT5 and S6 is observed in the presence of both EPO and NmU peptide when EPO was used at a dose of 2 U/mL. The mechanism whereby NmU activates a JAK dependent signaling pathway is under investigation. Preliminary evidence suggests that EPO induces the physical association of NMUR1 with EPO receptor (EPOR). Taken together, we propose that NmU is a neuropeptide expressed in bone marrow cells that cooperates to regulate erythroid expansion during early erythropoiesis through the activation of cytokine receptor like signaling pathways and perhaps through direct interaction with EPOR. NmU may be useful in the clinical management of anemia in patients unresponsive to EPO or other erythroid-stimulating agents. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1982 ◽  
Vol 60 (2) ◽  
pp. 362-367 ◽  
Author(s):  
DH Chui ◽  
BJ Clarke

Abstract Ten patients with preleukemia were studied by the erythroid cell clonal culture technique. In nine of these patients, erythroid colonies derived from peripheral blood BFU-E were not observed, while the other patient had markedly decreased peripheral blood BFU-E-derived erythroid colonies in vitro. In three patients, marrow cells were also cultured and no BFU-E-derived erythroid colonies were detected. These studies indicate that immature erythroid progenitor cells, BFU-E, in patients with preleukemia are either markedly decreased in number or grossly defective in their proliferative or differentiative capacities.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 948-948
Author(s):  
Shilpee Dutt ◽  
Anupama Narla ◽  
Jeffery Lorne Kutok ◽  
Benjamin L. Ebert

Abstract Abstract 948 Haploinsufficiency for the ribosomal protein genes RPS14 and RPS19 have been implicated in the erythroid defect in the 5q- syndrome and Diamond Blackfan Anemia, respectively. However, the mechanism by which defective ribosome biogenesis causes erythroid failure is unknown. In this study, we found that shRNA mediated knockdown of RPS14 or RPS19 in primary human CD34+ cells stabilize TP53 by day 4 after infection with concomitant arrest of these cells at G1 stage of cell cycle. The levels of TP53 attained are comparable to the levels observed following gamma irradiation (5Gy) of the CD34+ cells. Using quantitative PCR, we confirmed that stabilized TP53 activates expression of downstream target genes MDM2, p21, Bax and Wig-1. Furthermore, treatment of the CD34+ cells with Nutlin-3 phenocopies RPS14 or RPS19 knockdown, suggesting that the mechanism of TP53 activation is mediated by MDM2 pathway. Conversely, treatment with pifithrin-alpha, which inhibits the transactivation activity of TP53, rescues the effects of RPS14 or RPS19 knockdown. The in vitro activation of TP53 in CD34+ cells was restricted to erythroid cell lineage, consistent with the clinical phenotype of RPS14 or RPS19 haploinsufficiency. Moreover, immunohistochemical analysis of bone marrow biopsies from patient with the 5q- syndrome demonstrated intense staining of TP53 that was restricted to erythroid progenitor cells. Taken together our study indicates that inhibition of ribosomal biogenesis causes TP53 activation selectively in erythroid progenitor cells. Clinically, TP53 staining of patient samples could be used as a diagnostic marker for some types of MDS. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1982 ◽  
Vol 60 (2) ◽  
pp. 362-367 ◽  
Author(s):  
DH Chui ◽  
BJ Clarke

Ten patients with preleukemia were studied by the erythroid cell clonal culture technique. In nine of these patients, erythroid colonies derived from peripheral blood BFU-E were not observed, while the other patient had markedly decreased peripheral blood BFU-E-derived erythroid colonies in vitro. In three patients, marrow cells were also cultured and no BFU-E-derived erythroid colonies were detected. These studies indicate that immature erythroid progenitor cells, BFU-E, in patients with preleukemia are either markedly decreased in number or grossly defective in their proliferative or differentiative capacities.


Blood ◽  
1979 ◽  
Vol 54 (1) ◽  
pp. 105-116
Author(s):  
J Misiti ◽  
JL Spivak

Isokinetic-gradient sedimentation employing a shallow linear gradient of Ficoll in tissue culture medium was used to isolate erythroid progenitor cells (CFU-e) from mouse bone marrow. Following gradient sedimentation, 34% of the total nucleated cells and 48% of the CFU-e applied to the gradient were recovered, and three distinct modal populations of CFU-e could be distinguished. The slowest-migrating population did not require exposure to exogenous erythropoietin in order to form erythroid colonies in vitro. The other two modal populations of CFU-e required exposure to exogenous erythropoietin for differentiation. One of these, constituting 64% of the hormone- dependent CFU-e recovered, migrated with the bulk of the marrow cells, whereas the other migrated ahead of the bulk of the marrow cells. This latter population, which contained 34% of the CFU-e, was recovered with 11% of the marrow cells, representing a twofold to threefold enrichment. BFU-e migrated more slowly than the erythropoietin- dependent CFU-e. Resedimentation studies suggested that the two erythropoietin-dependent CFU-e populations were distinct modal populations. When cells from the fastest-migrating population of erythropoietin-dependent CFU-e were cocultured with unseparated marrow cells, a further twofold to threefold enhancement of erythroid colony formation was obtained. Comparison of isokinetic-gradient sedimentation with discontinuous and continuous albumin density-gradient sedimentation revealed that isokinetic-gradient sedimentation was a more efficient method than the former and a more rapid method than the latter for isolating CFU-e from mouse bone marrow.


Blood ◽  
1979 ◽  
Vol 54 (1) ◽  
pp. 105-116 ◽  
Author(s):  
J Misiti ◽  
JL Spivak

Abstract Isokinetic-gradient sedimentation employing a shallow linear gradient of Ficoll in tissue culture medium was used to isolate erythroid progenitor cells (CFU-e) from mouse bone marrow. Following gradient sedimentation, 34% of the total nucleated cells and 48% of the CFU-e applied to the gradient were recovered, and three distinct modal populations of CFU-e could be distinguished. The slowest-migrating population did not require exposure to exogenous erythropoietin in order to form erythroid colonies in vitro. The other two modal populations of CFU-e required exposure to exogenous erythropoietin for differentiation. One of these, constituting 64% of the hormone- dependent CFU-e recovered, migrated with the bulk of the marrow cells, whereas the other migrated ahead of the bulk of the marrow cells. This latter population, which contained 34% of the CFU-e, was recovered with 11% of the marrow cells, representing a twofold to threefold enrichment. BFU-e migrated more slowly than the erythropoietin- dependent CFU-e. Resedimentation studies suggested that the two erythropoietin-dependent CFU-e populations were distinct modal populations. When cells from the fastest-migrating population of erythropoietin-dependent CFU-e were cocultured with unseparated marrow cells, a further twofold to threefold enhancement of erythroid colony formation was obtained. Comparison of isokinetic-gradient sedimentation with discontinuous and continuous albumin density-gradient sedimentation revealed that isokinetic-gradient sedimentation was a more efficient method than the former and a more rapid method than the latter for isolating CFU-e from mouse bone marrow.


Blood ◽  
2001 ◽  
Vol 97 (4) ◽  
pp. 901-910 ◽  
Author(s):  
Justin N. Geiger ◽  
Geoffry T. Knudsen ◽  
Leigh Panek ◽  
Ajay K. Pandit ◽  
Michael D. Yoder ◽  
...  

Abstract DYRKs are a new subfamily of dual-specificity kinases that was originally discovered on the basis of homology to Yak1, an inhibitor of cell cycle progression in yeast. At present, mDYRK-3 and mDYRK-2 have been cloned, and mDYRK-3 has been characterized with respect to kinase activity, expression among tissues and hematopoietic cells, and possible function during erythropoiesis. In sequence, mDYRK-3 diverges markedly in noncatalytic domains from mDYRK-2 and mDYRK-1a, but is 91.3% identical overall to hDYRK-3. Catalytically, mDYRK-3 readily phosphorylated myelin basic protein (but not histone 2B) and also appeared to autophosphorylate in vitro. Expression of mDYRK-1a, mDYRK-2, and mDYRK-3 was high in testes, but unlike mDYRK1a and mDYRK 2, mDYRK-3 was not expressed at appreciable levels in other tissues examined. Among hematopoietic cells, however, mDYRK-3 expression was selectively elevated in erythroid cell lines and primary pro-erythroid cells. In developmentally synchronized erythroid progenitor cells, expression peaked sharply following exposure to erythropoietin plus stem cell factor (SCF) (but not SCF alone), and in situ hybridizations of sectioned embryos revealed selective expression of mDYRK-3 in fetal liver. Interestingly, antisense oligonucleotides to mDYRK-3 were shown to significantly and specifically enhance colony-forming unit–erythroid colony formation. Thus, it is proposed that mDYRK-3 kinase functions as a lineage-restricted, stage-specific suppressor of red cell development.


2000 ◽  
Vol 111 (1) ◽  
pp. 363-370 ◽  
Author(s):  
Katsuto Takenaka ◽  
Mine Harada ◽  
Tomoaki Fujisaki ◽  
Koji Nagafuji ◽  
Shinichi Mizuno ◽  
...  

Blood ◽  
1978 ◽  
Vol 51 (3) ◽  
pp. 539-547 ◽  
Author(s):  
DH Chui ◽  
SK Liao ◽  
K Walker

Abstract Erythroid progenitor cells in +/+ and Sl/Sld fetal livers manifested as burst-forming units-erythroid (BFU-E) and colony-forming units- erythroid (CFU-E) were assayed in vitro during early development. The proportion of BFU-E was higher as mutant than in normal fetal livers. On the other hand, the proportion of CFU-E was less in the mutant than in the normal. These results suggest that the defect in Sl/Sld fetal hepatic erythropoiesis is expressed at the steps of differentiation that effect the transition from BFU-E to CFU-E.


Blood ◽  
1998 ◽  
Vol 92 (10) ◽  
pp. 3658-3668 ◽  
Author(s):  
Birgit Panzenböck ◽  
Petr Bartunek ◽  
Markus Y. Mapara ◽  
Martin Zenke

Abstract Stem cell factor (SCF) and erythropoietin (Epo) effectively support erythroid cell development in vivo and in vitro. We have studied here an SCF/Epo-dependent erythroid progenitor cell from cord blood that can be efficiently amplified in liquid culture to large cell numbers in the presence of SCF, Epo, insulin-like growth factor-1 (IGF-1), dexamethasone, and estrogen. Additionally, by changing the culture conditions and by administration of Epo plus insulin, such progenitor cells effectively undergo terminal differentiation in culture and thereby faithfully recapitulate erythroid cell differentiation in vitro. This SCF/Epo-dependent erythroid progenitor is also present in CD34+ peripheral blood stem cells and human bone marrow and can be isolated, amplified, and differentiated in vitro under the same conditions. Thus, highly homogenous populations of SCF/Epo-dependent erythroid progenitors can be obtained in large cell numbers that are most suitable for further biochemical and molecular studies. We demonstrate that such cells express the recently identified adapter protein p62dok that is involved in signaling downstream of the c-kit/SCF receptor. Additionally, cells express the cyclin-dependent kinase (CDK) inhibitors p21cip1 and p27kip1 that are highly induced when cells differentiate. Thus, the in vitro system described allows the study of molecules and signaling pathways involved in proliferation or differentiation of human erythroid cells.


Sign in / Sign up

Export Citation Format

Share Document