Lineage-Specific Activation of p53 in Response to Ribosomal Haploinsufficiency in Human Bone Marrow Cells.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 948-948
Author(s):  
Shilpee Dutt ◽  
Anupama Narla ◽  
Jeffery Lorne Kutok ◽  
Benjamin L. Ebert

Abstract Abstract 948 Haploinsufficiency for the ribosomal protein genes RPS14 and RPS19 have been implicated in the erythroid defect in the 5q- syndrome and Diamond Blackfan Anemia, respectively. However, the mechanism by which defective ribosome biogenesis causes erythroid failure is unknown. In this study, we found that shRNA mediated knockdown of RPS14 or RPS19 in primary human CD34+ cells stabilize TP53 by day 4 after infection with concomitant arrest of these cells at G1 stage of cell cycle. The levels of TP53 attained are comparable to the levels observed following gamma irradiation (5Gy) of the CD34+ cells. Using quantitative PCR, we confirmed that stabilized TP53 activates expression of downstream target genes MDM2, p21, Bax and Wig-1. Furthermore, treatment of the CD34+ cells with Nutlin-3 phenocopies RPS14 or RPS19 knockdown, suggesting that the mechanism of TP53 activation is mediated by MDM2 pathway. Conversely, treatment with pifithrin-alpha, which inhibits the transactivation activity of TP53, rescues the effects of RPS14 or RPS19 knockdown. The in vitro activation of TP53 in CD34+ cells was restricted to erythroid cell lineage, consistent with the clinical phenotype of RPS14 or RPS19 haploinsufficiency. Moreover, immunohistochemical analysis of bone marrow biopsies from patient with the 5q- syndrome demonstrated intense staining of TP53 that was restricted to erythroid progenitor cells. Taken together our study indicates that inhibition of ribosomal biogenesis causes TP53 activation selectively in erythroid progenitor cells. Clinically, TP53 staining of patient samples could be used as a diagnostic marker for some types of MDS. Disclosures: No relevant conflicts of interest to declare.

1995 ◽  
Vol 15 (6) ◽  
pp. 3147-3153 ◽  
Author(s):  
G A Blobel ◽  
C A Sieff ◽  
S H Orkin

High-dose estrogen administration induces anemia in mammals. In chickens, estrogens stimulate outgrowth of bone marrow-derived erythroid progenitor cells and delay their maturation. This delay is associated with down-regulation of many erythroid cell-specific genes, including alpha- and beta-globin, band 3, band 4.1, and the erythroid cell-specific histone H5. We show here that estrogens also reduce the number of erythroid progenitor cells in primary human bone marrow cultures. To address potential mechanisms by which estrogens suppress erythropoiesis, we have examined their effects on GATA-1, an erythroid transcription factor that participates in the regulation of the majority of erythroid cell-specific genes and is necessary for full maturation of erythrocytes. We demonstrate that the transcriptional activity of GATA-1 is strongly repressed by the estrogen receptor (ER) in a ligand-dependent manner and that this repression is reversible in the presence of 4-hydroxytamoxifen. ER-mediated repression of GATA-1 activity occurs on an artificial promoter containing a single GATA-binding site, as well as in the context of an intact promoter which is normally regulated by GATA-1. GATA-1 and ER bind to each other in vitro in the absence of DNA. In coimmunoprecipitation experiments using transfected COS cells, GATA-1 and ER associate in a ligand-dependent manner. Mapping experiments indicate that GATA-1 and the ER form at least two contacts, which involve the finger region and the N-terminal activation domain of GATA-1. We speculate that estrogens exert effects on erythropoiesis by modulating GATA-1 activity through protein-protein interaction with the ER. Interference with GATA-binding proteins may be one mechanism by which steroid hormones modulate cellular differentiation.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 340-340
Author(s):  
Pratima Chaurasia ◽  
Dmitriy Berenzon ◽  
Ronald Hoffman

Abstract Abstract 340 Presently, blood transfusion products (TP) are composed of terminally differentiated cells with a finite life span. We attempted to develop an alternative TP which would be capable of generating additional red blood cells (RBC). Several histone deacetylase inhibitors (HDACIs) were used in vitro to reprogram cord blood (CB) CD34+ cells to differentiate to erythroid progenitor cells (EPC). We demonstrated that CB CD34+ cells in the presence of HDACIs (SAHA, VPA and TSA), and a combination of cytokines SCF, IL-3, TPO and FLT3, promoted expansion of CD34+ cells and CD34+CD90+ cells as compared to cultures containing cytokines alone. Addition of VPA resulted in the greatest expansion of CD34+ cells, CD34+CD90+cells+ (59.4 fold, p=0.01; 66.7 fold, p=0.02, respectively) as compared to SAHA and TSA. VPA also led to the generation of the greatest absolute number of EPC cells (14.9×106, p=0.002), approximately a 5500 fold in the numbers of assayable EPC, as compared to primary CB. The single cell analyses of CB CD34+ cells (Day0) and single CD34+ reisolated from ex-vivo cultures pretreated with cytokines alone or cytokines+VPA demonstrated an skewed differentiation program of CD34+ cells to EPC (>94%, p=0.003) compared to CB CD34+(50%) and cytokines alone (29%). We investigated the expression of lineage specific phenotypic markers expressed by CD34+ cells exposed to cytokines alone or cytokines plus VPA. The FACS analyses showed a significantly greater proportion of CD34+CD36+ (52.4% vs 21.0%) CD36+CD71+(44.5% vs7.6%), CD36+GPA+(12.8% Vs 4.0%) and CD71+GPA+(22.2% vs 6.3%) cells with lower numbers of CD19+(2.8% vs 13.6%) cells, CD14+(2.0% vs 8.9%), CD15+(1.8 vs 6.9%) in VPA treated CD34+ cells as compared to cytokines alone. We monitored the relative expression of a group of genes characteristic of both primitive HPC and erythroid commitment (Bmi1, Dnmt1, Ezh2, Smad5, Eklf, GATA1, GATA2, EpoR and Pu.1). Q-PCR was performed on CD34+cells reisolated from cultures treated with cytokines alone or cytokines plus VPA and compared to primary CB CD34+ cells. The expression of genes associated with retention of the biological properties of the primitive HPC (Bmi1-2.6 fold, Dnmt1-10.3 fold and Ezh2-4.8 fold) and erythroid lineage specific genes (Smad5-6.2 fold, GATA2-3.7 fold) were upregulated and Pu.1 (0.6-fold), GATA1(1.9 fold) were downregulated as compared to cytokines alone. However, expression of EpoR and Eklf were similar in the two cell populations Histone acetylation study showed that the CB CD34+ cells and VPA treated CD34+ cells had a significant proportion of acetylated H3K9 cells, 52.2% and 56.1% respectively, while this population was virtually absent in CD34+ cells exposed to cytokines alone (1.3%, p=0.001). ChIP assay demonstrated a varying degree of H3K9/14 and H3K27 acetylation within the promoters of VPA treated CD34+ cells for GATA2 (7.4 fold, 7.2 fold), Eklf (7.4 fold, 9.7 fold), Pu.1(4.5fold, 4.8 fold), EpoR (2.3 fold, 4.7 fold) and GATA1(4.7 fold, 2.9 fold). The acetylation of cytokines treated CD34+ cells were much lower than VPA treated CD34+ cells. The VPA treated cell product after 9 days (supplemented with SCF, Epo and IL-3 for 2 additional days) compared to 7 days contained a greater percentage of EPC and erythroid precursor cells CD34+CD36+(24.9% vs 23.0%), CD36+GPA+(33.9% vs 18.8%), CD36+. CD71+(55.8% vs 37.8%), CD71+GPA+(33.9% vs 20.5%) and CD34+CXCR4+(28.8% vs 21.0 %). The TP contained very limited number of CD19+(1.4%), CD14+(11.11%) or CD15+(6.8%) of cells. Approximately 50 % of the cells present in the TP expressed the chemokine receptor CXCR4. We next evaluated the behavior of ex vivo expanded cell product following transfusion into sublethally irradiated NOD/SCID mice. FACS analyses of mice peripheral blood (PB) on serial days showed evidence of circulating nucleated erythroid and enucleated red cells. The greatest number of circulating human RBC (12.4%±6.8%) was observed on day5. RT-PCR analyses on the PB of mice on day 15 revealed the presence of erythroid cells containing both human adult and fetal hemoglobin. On day 15 the mice were sacrificed and the degree of human cells engraftment in the marrow were predominately hu -CD45+ (7.4%), CD34-CD36+(1.8%), CD36 (4.5%) and GPA+(1.7%) with no evidence of CD33+, CD14+, CD19+ and CD41+ cells. The ex vivo generated EPC-TP likely represents a paradigm shift in transfusion medicine due to its continued ability to generate additional RBC. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
1997 ◽  
Vol 90 (2) ◽  
pp. 605-611 ◽  
Author(s):  
Shao-bo Su ◽  
Naofumi Mukaida ◽  
Jian-bin Wang ◽  
Yi Zhang ◽  
Akiyoshi Takami ◽  
...  

Abstract Several lines of evidence indicate that macrophage inflammatory protein-1α (MIP-1α) modulates the proliferation of hematopoietic progenitor cells, depending on their maturational stages. To clarify the mechanisms for the modulation of hematopoiesis by this chemokine, we examined the expression of a receptor for MIP-1α, CCR1, on bone marrow cells of normal individuals using a specific antibody and explored the effects of MIP-1α on in vitro erythropoiesis driven by stem cell factor (SCF) and erythropoietin (Epo). CCR1 was expressed on glycophorin A-positive erythroblasts in addition to lymphocytes and granulocytes. CCR1+ cells, isolated from bone marrow mononuclear cells (BMMNCs) using a cell sorter, comprised virtually all erythroid progenitor cells in the BMMNCs. Moreover, MIP-1α inhibited, in a dose-dependent manner, colony formation by burst-forming unit-erythroid (BFU-E), but not by colony forming unit-erythroid (CFU-E), in a methylcellulose culture of purified human CD34+ bone marrow cells. Although reverse-transcription polymerase chain reaction (RT-PCR) showed the presence of CCR1, CCR4, and CCR5 transcripts in CD34+ cells in BM, anti-CCR1 antibodies significantly abrogated the inhibitory effects of MIP-1α on BFU-E formation both in a methylcellulose culture and in a single cell proliferation assay of purified CD34+ cells. Although the contribution of CCR4 or CCR5 cannot be completely excluded, these results suggest that MIP-1α–mediated suppression of the proliferation of immature, but not mature erythroid progenitor cells, is largely mediated by CCR1 expressed on these progenitor cells.


Blood ◽  
2011 ◽  
Vol 117 (9) ◽  
pp. 2567-2576 ◽  
Author(s):  
Shilpee Dutt ◽  
Anupama Narla ◽  
Katherine Lin ◽  
Ann Mullally ◽  
Nirmalee Abayasekara ◽  
...  

Abstract Haploinsufficiency for ribosomal protein genes has been implicated in the pathophysiology of Diamond-Blackfan anemia (DBA) and the 5q− syndrome, a subtype of myelodysplastic syndrome. The p53 pathway is activated by ribosome dysfunction, but the molecular basis for selective impairment of the erythroid lineage in disorders of ribosome function has not been determined. We found that p53 accumulates selectively in the erythroid lineage in primary human hematopoietic progenitor cells after expression of shRNAs targeting RPS14, the ribosomal protein gene deleted in the 5q− syndrome, or RPS19, the most commonly mutated gene in DBA. Induction of p53 led to lineage-specific accumulation of p21 and consequent cell cycle arrest in erythroid progenitor cells. Pharmacologic inhibition of p53 rescued the erythroid defect, whereas nutlin-3, a compound that activates p53 through inhibition of HDM2, selectively impaired erythropoiesis. In bone marrow biopsies from patients with DBA or del(5q) myelodysplastic syndrome, we found an accumulation of nuclear p53 staining in erythroid progenitor cells that was not present in control samples. Our findings indicate that the erythroid lineage has a low threshold for the induction of p53, providing a basis for the failure of erythropoiesis in the 5q− syndrome, DBA, and perhaps other bone marrow failure syndromes.


Blood ◽  
1997 ◽  
Vol 90 (2) ◽  
pp. 605-611 ◽  
Author(s):  
Shao-bo Su ◽  
Naofumi Mukaida ◽  
Jian-bin Wang ◽  
Yi Zhang ◽  
Akiyoshi Takami ◽  
...  

Several lines of evidence indicate that macrophage inflammatory protein-1α (MIP-1α) modulates the proliferation of hematopoietic progenitor cells, depending on their maturational stages. To clarify the mechanisms for the modulation of hematopoiesis by this chemokine, we examined the expression of a receptor for MIP-1α, CCR1, on bone marrow cells of normal individuals using a specific antibody and explored the effects of MIP-1α on in vitro erythropoiesis driven by stem cell factor (SCF) and erythropoietin (Epo). CCR1 was expressed on glycophorin A-positive erythroblasts in addition to lymphocytes and granulocytes. CCR1+ cells, isolated from bone marrow mononuclear cells (BMMNCs) using a cell sorter, comprised virtually all erythroid progenitor cells in the BMMNCs. Moreover, MIP-1α inhibited, in a dose-dependent manner, colony formation by burst-forming unit-erythroid (BFU-E), but not by colony forming unit-erythroid (CFU-E), in a methylcellulose culture of purified human CD34+ bone marrow cells. Although reverse-transcription polymerase chain reaction (RT-PCR) showed the presence of CCR1, CCR4, and CCR5 transcripts in CD34+ cells in BM, anti-CCR1 antibodies significantly abrogated the inhibitory effects of MIP-1α on BFU-E formation both in a methylcellulose culture and in a single cell proliferation assay of purified CD34+ cells. Although the contribution of CCR4 or CCR5 cannot be completely excluded, these results suggest that MIP-1α–mediated suppression of the proliferation of immature, but not mature erythroid progenitor cells, is largely mediated by CCR1 expressed on these progenitor cells.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4102-4102
Author(s):  
Vladan P. Cokic ◽  
Bojana B. Beleslin-Cokic ◽  
Constance Tom Noguchi ◽  
Alan N. Schechter

Abstract We have previously shown that nitric oxide (NO) is involved in the hydroxyurea-induced increase of gamma-globin gene expression in cultured human erythroid progenitor cells and that hydroxyurea increases NO production in endothelial cells via endothelial NO synthase (NOS). Here we report that co-culture of human bone marrow endothelial cells with erythroid progenitor cells induced gamma-globin mRNA expression (1.8 fold), and was further elevated (2.4 fold) in the presence of hydroxyurea (40 μM). Based on these results, NOS-dependent stimulation of NO levels by bradykinin and lipopolysaccharide has been observed in endothelial (up to 0.3 μM of NO) and macrophage cells (up to 6 μM of NO), respectively. Bradykinin slightly increased gamma-globin mRNA levels in erythroid progenitor cells, but failed to increase gamma-globin mRNA levels in endothelial/erythroid cell co-cultures indicating that stimulation of endothelial cell production of NO alone is not sufficient to induce gamma-globin expression. In contrast, lipopolysaccharide and interferon-gamma mutually increased gamma-globin gene expression (2 fold) in macrophage/erythroid cell co-cultures. In addition, hydroxyurea (5–100 μM) induced NOS-dependent production of NO in human (up to 0.7 μM) and mouse macrophages (up to 1.2 μM). Co-culture studies of macrophages with erythroid progenitor cells also resulted in induction of gamma-globin mRNA expression (up to 3 fold) in the presence of hydroxyurea (20–100 μM). These results demonstrate a mechanism by which hydroxyurea may induce globin genes and affect changes in the phenotype of hematopoietic cells via the common paracrine effect of bone marrow stromal cells.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1241-1241
Author(s):  
Rebecca Lenzo ◽  
Martha Dua-Awereh ◽  
Martin Carroll ◽  
Susan E. Shetzline

Abstract Abstract 1241 Erythropoiesis is a multi-step process during which hematopoietic stem cells terminally differentiate into red blood cells (RBCs). Erythropoietin (EPO) is the only known cytokine regulator of terminal erythroid differentiation. Previously, we reported that the neuropeptide, neuromedin U (NmU), which interacts with NmU receptor type 1 (NMUR1), functions as a novel extracellular cofactor with EPO to promote the expansion of early erythroblasts, which are CD34−, CD71+, glycophorin A (GlyA)dim(Gambone et al, Blood. 2011). Here, we describe studies to understand the mechanism whereby NmU augments EPO effects on erythroid cell growth. EPO triggers Janus kinase (Jak)-2 dependent activation of signal transducer and activator of transcription (STAT) 5 and phosphatidylinositol 3-kinase (PI3K) to promote the proliferation and/or survival of erythroid progenitor cells. We hypothesized that NmU peptide would cooperate with EPO to promote the proliferation of early erythroblasts through STAT5 and/or PI3K activation. To address this hypothesis, we cultured primary human CD34+ cells in 2-stage liquid culture with IL-3, IL-6, and stem cell factor (SCF) from day 0 to day 6. On day 6, 2U/mL of EPO was added, and the cells were cultured for an additional 5 days to expand erythroid progenitors. On day 11, cells were briefly serum starved and then stimulated with EPO and/or NmU in the absence or presence of a Jak-1/2 inhibitor. Activation of STAT5 and S6, a surrogate marker for PI3K activation, were assessed by phospho-flow in ERY3 (CD34−, CD71+, GlyA+) and ERY4 (CD34−, CD71dim, GlyA+) cells. As expected, EPO alone activated STAT5 and S6 in ERY3 cells only, and the presence of a Jak-1/2 inhibitor diminished STAT5 activation. Interestingly, STAT5 and S6 were activated by NmU peptide alone in ERY3 and ERY4. Surprisingly, in the presence of a Jak-1/2 inhibitor, NmU peptide, which binds to NMUR1 a G-protein coupled receptor, did not activate STAT5 or S6 in ERY3 or 4 cells, suggesting that NmU functions through a JAK kinase in erythroid cells. No additive or synergistic activation of STAT5 and S6 is observed in the presence of both EPO and NmU peptide when EPO was used at a dose of 2 U/mL. The mechanism whereby NmU activates a JAK dependent signaling pathway is under investigation. Preliminary evidence suggests that EPO induces the physical association of NMUR1 with EPO receptor (EPOR). Taken together, we propose that NmU is a neuropeptide expressed in bone marrow cells that cooperates to regulate erythroid expansion during early erythropoiesis through the activation of cytokine receptor like signaling pathways and perhaps through direct interaction with EPOR. NmU may be useful in the clinical management of anemia in patients unresponsive to EPO or other erythroid-stimulating agents. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4316-4316
Author(s):  
Hendrik Folkerts ◽  
Maria Catalina Gomez Puerto ◽  
Albertus T.J. Wierenga ◽  
Koen Schepers ◽  
Jan Jacob Schuringa ◽  
...  

Abstract Macroautophagy is a catabolic process by which intracellular contents are delivered to lysosomes for degradation. ATG5 and ATG7 play an essential role in this process. Recent studies have shown that mouse hematopoietic stem cells (HSCs) lacking ATG7 were unable to survive in vivo, however, the role of macroautophagy in proliferation and survival of human HSCs has not yet been defined. Here, we demonstrate that autophagy is functional in human hematopoietic stem/progenitor cells. Robust accumulation of the autophagy markers LC3 and p62 were observed in cord blood (CB)-derived CD34+ cells treated with bafilomycin-A1 (BAF) or hydroxychloroquine (HCQ), as defined by Western blotting. When these cells were subsequently differentiated towards the myeloid or erythroid lineage, a decreased accumulation of LC3 was observed. In addition, CB CD34+CD38- cells showed enhanced accumulation of cyto-ID (a marker for autophagic vesicles) compared to CD34+CD38+ progenitor cells upon BAF or HCQ treatment. In line with these results, also more mature CB CD33+ and CD14+ myeloid cells or CD71+CD235+ erythroid cells showed reduced levels of cyto-ID accumulation upon BAF or HCQ treatment. These findings indicate that human hematopoietic stem and progenitor cells (HSPCs) have a higher basal autophagy flux compared to more differentiated cells. To study the functional consequences of autophagy in human HSCs and their progeny, ATG5 and ATG7 were downregulated in CB-derived CD34+ cells, using a lentiviral shRNA approach which resulted in 80% and 70% reduced expression, respectively. Downmodulation of ATG5 or ATG7 in CB CD34+ cells resulted in a significant reduction of erythroid progenitor frequencies, as assessed by colony forming cell (CFC) assays (shATG5 2.2 fold, p<0.05 or shATG7 1.4 fold p<0.05). Additionally, a strong reduction in expansion was observed when transduced cells were cultured under myeloid (shATG5 17.9 fold, p<0.05 or shATG7 12.3 fold, p<0.05) or erythroid permissive conditions (shATG5 6.7 fold, p<0.05 or shATG7 1.7 fold, p<0.05), whereby differentiation was not affected. The phenotype upon knockdown of ATG5 or ATG7 could not be reversed by culturing the cells on a MS5 stromal layer. In addition to progenitor cells, HSCs were also affected since long term culture-initiating cell (LTC-IC) assays in limiting dilution revealed a 3-fold reduction in stem cell frequency after ATG5 and ATG7 knockdown. The inhibitory effects of shATG5 and shATG7 in cultured CD34+ cells were at least in part due to a decline in the percentage of cells in S phase and (shATG5 1.4 fold, p<0.01 and shATG7 1.3 fold, p<0.01) and an increase of Annexin V positive cells. The changes in cell cycle and apoptosis coincided with a marked increase in expression of the cell cycle-dependent kinase inhibitor p21, an increase in p53 levels, and an increase in proapoptotic downstream target genes BAX, PUMA and PHLDA3. Additionally, ROS levels were increased after ATG5 and ATG7 knockdown. The increased apoptosis in shATG5 and shATG7 transduced cells might be triggered by elevated ROS levels. Taken together, our data demonstrate that autophagy is an important survival mechanism for human HSCs and their progeny. Disclosures No relevant conflicts of interest to declare.


2010 ◽  
Vol 38 (11) ◽  
pp. 994-1005.e2 ◽  
Author(s):  
Susan Wong ◽  
Keyvan Keyvanfar ◽  
Zhihong Wan ◽  
Sachiko Kajigaya ◽  
Neal S. Young ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document