scholarly journals Sequence-specific targeting of nuclear signal transduction pathways by homeodomain proteins.

1995 ◽  
Vol 15 (6) ◽  
pp. 3318-3326 ◽  
Author(s):  
D A Grueneberg ◽  
K J Simon ◽  
K Brennan ◽  
M Gilman

Cells translate extracellular signals into specific programs of gene expression that reflect their developmental history or identity. We present evidence that one way this interpretation may be performed is by cooperative interactions between serum response factor (SRF) and certain homeodomain proteins. We show that human and Drosophila homeodomain proteins of the paired class have the ability to recruit SRF to DNA sequences not efficiently recognized by SRF on its own, thereby imparting to a linked reporter gene the potential to respond to polypeptide growth factors. This activity requires both the DNA-binding activity of the homeodomain and putative protein-protein contact residues on the exposed surfaces of homeodomain helices 1 and 2. The ability of the homeodomain to impart signal responsiveness is DNA sequence specific, and this specificity differs from the simple DNA-binding specificity of the homeodomain in vitro. The homeodomain imparts response to a spectrum of signals characteristic of the natural SRF-binding site in the c-fos gene. Response to some of these signals is dependent on the secondary recruitment of SRF-dependent ternary complex factors, and we show directly that a homeodomain can promote the recruitment of one such factor, Elk1. We infer that SRF and homeodomains interact cooperatively on DNA and that formation of SRF-homeodomain complexes permits the recruitment of signal-responsive SRF accessory proteins. The ability to route extracellular signals to specific target genes is a novel activity of the homeodomain, which may contribute to the identity function displayed by many homeodomain genes.

2000 ◽  
Vol 20 (15) ◽  
pp. 5540-5553 ◽  
Author(s):  
Yue Liu ◽  
April L. Colosimo ◽  
Xiang-Jiao Yang ◽  
Daiqing Liao

ABSTRACT The adenovirus E1B 55-kDa protein binds to cellular tumor suppressor p53 and inactivates its transcriptional transactivation function. p53 transactivation activity is dependent upon its ability to bind to specific DNA sequences near the promoters of its target genes. It was shown recently that p53 is acetylated by transcriptional coactivators p300, CREB bidning protein (CBP), and PCAF and that acetylation of p53 by these proteins enhances p53 sequence-specific DNA binding. Here we show that the E1B 55-kDa protein specifically inhibits p53 acetylation by PCAF in vivo and in vitro, while acetylation of histones and PCAF autoacetylation is not affected. Furthermore, the DNA-binding activity of p53 is diminished in cells expressing the E1B 55-kDa protein. PCAF binds to the E1B 55-kDa protein and to a region near the C terminus of p53 encompassing Lys-320, the specific PCAF acetylation site. We further show that the E1B 55-kDa protein interferes with the physical interaction between PCAF and p53, suggesting that the E1B 55-kDa protein inhibits PCAF acetylase function on p53 by preventing enzyme-substrate interaction. These results underscore the importance of p53 acetylation for its function and suggest that inhibition of p53 acetylation by viral oncoproteins prevent its activation, thereby contributing to viral transformation.


1989 ◽  
Vol 9 (6) ◽  
pp. 2464-2476
Author(s):  
M Cockell ◽  
B J Stevenson ◽  
M Strubin ◽  
O Hagenbüchle ◽  
P K Wellauer

Footprint analysis of the 5'-flanking regions of the alpha-amylase 2, elastase 2, and trypsina genes, which are expressed in the acinar pancreas, showed multiple sites of protein-DNA interaction for each gene. Competition experiments demonstrated that a region from each 5'-flanking region interacted with the same cell-specific DNA-binding activity. We show by in vitro binding assays that this DNA-binding activity also recognizes a sequence within the 5'-flanking regions of elastase 1, chymotrypsinogen B, carboxypeptidase A, and trypsind genes. Methylation interference and protection studies showed that the DNA-binding activity recognized a bipartite motif, the subelements of which were separated by integral helical turns of DNA. The alpha-amylase 2 cognate sequence was found to enhance in vivo transcription of its own promoter in a cell-specific manner, which identified the DNA-binding activity as a transcription factor (PTF 1). The observation that PTF 1 bound to DNA sequences that have been defined as transcriptional enhancers by others suggests that this factor is involved in the coordinate expression of genes transcribed in the acinar pancreas.


1989 ◽  
Vol 9 (6) ◽  
pp. 2464-2476 ◽  
Author(s):  
M Cockell ◽  
B J Stevenson ◽  
M Strubin ◽  
O Hagenbüchle ◽  
P K Wellauer

Footprint analysis of the 5'-flanking regions of the alpha-amylase 2, elastase 2, and trypsina genes, which are expressed in the acinar pancreas, showed multiple sites of protein-DNA interaction for each gene. Competition experiments demonstrated that a region from each 5'-flanking region interacted with the same cell-specific DNA-binding activity. We show by in vitro binding assays that this DNA-binding activity also recognizes a sequence within the 5'-flanking regions of elastase 1, chymotrypsinogen B, carboxypeptidase A, and trypsind genes. Methylation interference and protection studies showed that the DNA-binding activity recognized a bipartite motif, the subelements of which were separated by integral helical turns of DNA. The alpha-amylase 2 cognate sequence was found to enhance in vivo transcription of its own promoter in a cell-specific manner, which identified the DNA-binding activity as a transcription factor (PTF 1). The observation that PTF 1 bound to DNA sequences that have been defined as transcriptional enhancers by others suggests that this factor is involved in the coordinate expression of genes transcribed in the acinar pancreas.


Author(s):  
Yoshitaka Sunami ◽  
Takashi Yokoyama ◽  
Seiko Yoshino ◽  
Tomoko Takahara ◽  
Yukari Yamazaki ◽  
...  

The transcriptional repressor, BCL11A, is involved in hematological malignancies, B-cell development, and fetal-to-adult hemoglobin switching. However, the molecular mechanism by which it promotes the development of myeloid leukemia remains largely unknown. We find that Bcl11a cooperates with the pseudokinase, Trib1, in the development of acute myeloid leukemia (AML). Bcl11a promotes the proliferation and engraftment of Trib1-expressing AML cells both in vitro and in vivo. ChIP-seq analysis showed that upon DNA-binding, Bcl11a is significantly associated with PU.1, an inducer of myeloid differentiation, and that Bcl11a represses several PU.1 target genes, such as Asb2, Clec5a, and Fcgr3. Asb2, as a Bcl11a target gene that modulates cytoskeleton and cell-cell interaction, plays a key role in Bcl11a-induced malignant progression. The repression of PU.1 target genes by Bcl11a is achieved by both sequence-specific DNA-binding activity and recruitment of corepressors by Bcl11a. Suppression of the corepressor components, HDAC and LSD1, reverses the repressive activity. Moreover, treatment of AML cells with the HDAC inhibitor, pracinostat, and LSD1 inhibitor, GSK2879552, resulted in growth inhibition both in vitro and in vivo. High BCL11A expression is associated with worse prognosis in human AML patients. Blocking of BCL11A expression upregulates the expression of PU.1 target genes, and inhibits the growth of HL-60 cells and their engraftment to the bone marrow, suggesting that BCL11A is involved in human myeloid malignancies via the suppression of PU.1 transcriptional activity.


1996 ◽  
Vol 16 (4) ◽  
pp. 1479-1489 ◽  
Author(s):  
M Ubeda ◽  
X Z Wang ◽  
H Zinszner ◽  
I Wu ◽  
J F Habener ◽  
...  

CHOP (GADD153) is a mammalian nuclear protein that dimerizes with members of the C/EBP family of transcriptional factors. Absent under normal conditions, CHOP is induced by the stress encountered during nutrient deprivation, the acute-phase response, and treatment of cells with certain toxins. The basic region of CHOP deviates considerably in sequence from that of other C/EBP proteins, and CHOP-C/EBP heterodimers are incapable of binding to a common class of C/EBP sites. With respect to such sites, CHOP serves as an inhibitor of the activity of C/EBP proteins. However, recent studies indicate that certain functions of CHOP, such as the induction of growth arrest by overexpression of the wild-type protein and oncogenic transformation by the TLS-CHOP fusion protein, require an intact basic region, suggesting that DNA binding by CHOP may be implicated in these activities. In this study an in vitro PCR-based selection assay was used to identify sequences bound by CHOP-C/EBP dimers. These sequences were found to contain a unique core element PuPuPuTGCAAT(A/C)CCC. Competition in DNA-binding assays, DNase 1 footprint analysis, and methylation interference demonstrate that the binding is sequence specific. Deletions in the basic region of CHOP lead to a loss of DNA binding, suggesting that CHOP participates in this process. Stress induction in NIH 3T3 cells leads to the appearance of CHOP-containing DNA-binding activity. CHOP is found to contain a transcriptional activation domain which is inducible by cellular stress, lending further support to the notion that the protein can function as a positively acting transcription factor. We conclude that CHOP may serve a dual role both as an inhibitor of the ability of C/EBP proteins to activate some target genes and as a direct activator of others.


Development ◽  
1988 ◽  
Vol 104 (Supplement) ◽  
pp. 75-83 ◽  
Author(s):  
Allen Laughon ◽  
William Howell ◽  
Matthew P. Scott

The ANT-C gene cluster is part of a network of genes that govern pattern formation in the development of Drosophila. The ANT-C genes encode proteins that contain a conserved 60 amino acid sequence, the homeodomain. Here we show that the homeodomains encoded by two of the ANT-C loci confer sequencespecific DNA-binding activity. The DNA sequence specificities of the Dfd and ftz homeodomains appear to overlap completely in vitro, indicating that differences in regulatory specificity among ANT-C and BX-C proteins (assuming that differences exist) must be a consequence of the nonconserved protein sequences found outside of the homeodomains. Deletions that remove sequences from either end of the ftz homeodomain abolish DNA-binding activity, consistent with the commonly held assumption that the homeodomain is a structural domain. The relevance of in vitro DNA-binding experiments to the regulatory function of ftz is supported by our finding that a temperature-sensitive ftz mutation that causes a pairwise fusion of embryonic segments also reduces the affinity of the ftz homeodomain for DNA. Restriction fragments containing ftz homeodomain binding sites were identified within a 90 kb stretch of DNA extending the Antp P1 and P2 promoters. Binding sites appear to be clustered near the P1 promoter but also occur near P2 and in the region between the two. The task remains of determining which of these sequences mediate regulation of Antp by ftz or by other genes that encode closely related homeodomains.


1993 ◽  
Vol 13 (4) ◽  
pp. 2354-2365
Author(s):  
K M Catron ◽  
N Iler ◽  
C Abate

Murine homeobox genes play a fundamental role in directing embryogenesis by controlling gene expression during development. The homeobox encodes a DNA binding domain (the homeodomain) which presumably mediates interactions of homeodomain proteins with specific DNA sites in the control regions of target genes. However, the bases for these selective DNA-protein interactions are not well defined. In this report, we have characterized the DNA binding specificities of three murine homeodomain proteins, Hox 7.1, Hox 1.5, and En-1. We have identified optimal DNA binding sites for each of these proteins by using a random oligonucleotide selection strategy. Comparison of the sequences of the selected binding sites predicted a common consensus site that contained the motif (C/G)TAATTG. The TAAT core was essential for DNA binding activity, and the nucleotides flanking this core directed binding specificity. Whereas variations in the nucleotides flanking the 5' side of the TAAT core produced modest alterations in binding activity for all three proteins, perturbations of the nucleotides directly 3' of the core distinguished the binding specificity of Hox 1.5 from those of Hox 7.1 and En-1. These differences in binding activity reflected differences in the dissociation rates rather than the equilibrium constants of the protein-DNA complexes. Differences in DNA binding specificities observed in vitro may contribute to selective interactions of homeodomain proteins with potential binding sites in the control regions of target genes.


1995 ◽  
Vol 15 (8) ◽  
pp. 3989-3997 ◽  
Author(s):  
M L Phelan ◽  
I Rambaldi ◽  
M S Featherstone

Homeoprotein products of the Hox/HOM gene family pattern the animal embryo through the transcriptional regulation of target genes. We have previously shown that the labial group protein HOXA-1 has intrinsically weak DNA-binding activity due to residues in the N-terminal arm of its homeodomain (M. L. Phelan, R. Sadoul, and M. S. Featherstone, Mol. Cell. Biol. 14:5066-5075, 1994). This observation, among others, suggests that HOX and HOM proteins require cofactors for stable interactions with DNA. We have demonstrated that a putative HOX cofactor, PBX1A, participates in cooperative DNA binding with HOXA-1 and the Deformed group protein HOXD-4. Three Abdominal-B class HOX proteins failed to cooperate with PBX1A. We mapped the interacting domain of HOXD-4 to the YPWMK pentapeptide motif, a conserved sequence found N terminal to the homeodomain of HOXA-1 and many other homeoproteins but absent from the Abdominal-B class. The naturally occurring fusion of the transcriptional activation domain of E2A with PBX1 creates an oncoprotein implicated in human pre-B-cell leukemias (M. P. Kamps, C. Murre, X.-H. Sun, and D. Baltimore, Cell 60:547-555, 1990; J. Nourse, J. D. Mellentin, N. Galili, J. Wilkinson, E. Starbridge, S. D. Smith, and M. L. Cleary, Cell 60:535-545, 1990). A pentapeptide mutation that abolished cooperative interaction with PBX1A in vitro also abrogated synergistic transcriptional activation with the E2A/PBX oncoprotein. The direct contact of PBX family members by the HOX pentapeptide is likely to play an important role in developmental and oncogenic processes.


Science ◽  
1992 ◽  
Vol 257 (5073) ◽  
pp. 1089-1095 ◽  
Author(s):  
D. A. Grueneberg ◽  
S. Natesan ◽  
C. Alexandre ◽  
M. Z. Gilman

1993 ◽  
Vol 13 (4) ◽  
pp. 2354-2365 ◽  
Author(s):  
K M Catron ◽  
N Iler ◽  
C Abate

Murine homeobox genes play a fundamental role in directing embryogenesis by controlling gene expression during development. The homeobox encodes a DNA binding domain (the homeodomain) which presumably mediates interactions of homeodomain proteins with specific DNA sites in the control regions of target genes. However, the bases for these selective DNA-protein interactions are not well defined. In this report, we have characterized the DNA binding specificities of three murine homeodomain proteins, Hox 7.1, Hox 1.5, and En-1. We have identified optimal DNA binding sites for each of these proteins by using a random oligonucleotide selection strategy. Comparison of the sequences of the selected binding sites predicted a common consensus site that contained the motif (C/G)TAATTG. The TAAT core was essential for DNA binding activity, and the nucleotides flanking this core directed binding specificity. Whereas variations in the nucleotides flanking the 5' side of the TAAT core produced modest alterations in binding activity for all three proteins, perturbations of the nucleotides directly 3' of the core distinguished the binding specificity of Hox 1.5 from those of Hox 7.1 and En-1. These differences in binding activity reflected differences in the dissociation rates rather than the equilibrium constants of the protein-DNA complexes. Differences in DNA binding specificities observed in vitro may contribute to selective interactions of homeodomain proteins with potential binding sites in the control regions of target genes.


Sign in / Sign up

Export Citation Format

Share Document