scholarly journals Pbx modulation of Hox homeodomain amino-terminal arms establishes different DNA-binding specificities across the Hox locus.

1996 ◽  
Vol 16 (4) ◽  
pp. 1734-1745 ◽  
Author(s):  
C P Chang ◽  
L Brocchieri ◽  
W F Shen ◽  
C Largman ◽  
M L Cleary

Pbx cofactors are implicated to play important roles in modulating the DNA-binding properties of heterologous homeodomain proteins, including class I Hox proteins. To assess how Pbx proteins influence Hox DNA-binding specificity, we used a binding-site selection approach to determine high-affinity target sites recognized by various Pbx-Hox homeoprotein complexes. Pbx-Hox heterodimers preferred to bind a bipartite sequence 5'-ATGATTNATNN-3' consisting of two adjacent half sites in which the Pbx component of the heterodimer contacted the 5' half (ATGAT) and the Hox component contacted the more variable 3' half (TNATNN). Binding sites matching the consensus were also obtained for Pbx1 complexed with HoxA10, which lacks a hexapeptide but requires a conserved tryptophan-containing motif for cooperativity with Pbx. Interactions with Pbx were found to play an essential role in modulating Hox homeodomain amino-terminal arm contact with DNA in the core of the Hox half site such that heterodimers of different compositions could distinguish single nucleotide alterations in the Hox half site both in vitro and in cellular assays measuring transactivation. When complexed with Pbx, Hox proteins B1 through B9 and A10 showed stepwise differences in their preferences for nucleotides in the Hox half site core (TTAT to TGAT, 5' to 3') that correlated with the locations of their respective genes in the Hox cluster. These observations demonstrate previously undetected DNA-binding specificity for the amino-terminal arm of the Hox homeodomain and suggest that different binding activities of Pbx-Hox complexes are at least part of the position-specific activities of the Hox genes.

1994 ◽  
Vol 14 (7) ◽  
pp. 4532-4545
Author(s):  
I Pellerin ◽  
C Schnabel ◽  
K M Catron ◽  
C Abate

The hox genes, members of a family of essential developmental regulators, have the intriguing property that their expression in the developing murine embryo is colinear with their chromosomal organization. Members of the hox gene family share a conserved DNA binding domain, termed the homeodomain, which mediates interactions of Hox proteins with DNA regulatory elements in the transcriptional control regions of target genes. In this study, we characterized the DNA binding properties of five representative members of the Hox family: HoxA5, HoxB4, HoxA7, HoxC8, and HoxB1. To facilitate a comparative analysis of their DNA binding properties, we produced the homeodomain regions of these Hox proteins in Escherichia coli and obtained highly purified polypeptides. We showed that these Hox proteins interact in vitro with a common consensus DNA site that contains the motif (C/G)TAATTG. We further showed that the Hox proteins recognize the consensus DNA site in vivo, as determined by their ability to activate transcription through this site in transient transfection assays. Although they interact optimally with the consensus DNA site, the Hox proteins exhibit subtle, but distinct, preferences for DNA sites that contain variations of the nucleotides within the consensus motif. In addition to their modest differences in DNA binding specificities, the Hox proteins also vary in their relative affinities for DNA. Intriguingly, their relative affinities correlate with the positions of their respective genes on the hox cluster. These findings suggest that subtle differences in DNA binding specificity combined with differences in DNA binding affinity constitute features of the "Hox code" that contribute to the selective functions of Hox proteins during murine embryogenesis.


1994 ◽  
Vol 14 (7) ◽  
pp. 4532-4545 ◽  
Author(s):  
I Pellerin ◽  
C Schnabel ◽  
K M Catron ◽  
C Abate

The hox genes, members of a family of essential developmental regulators, have the intriguing property that their expression in the developing murine embryo is colinear with their chromosomal organization. Members of the hox gene family share a conserved DNA binding domain, termed the homeodomain, which mediates interactions of Hox proteins with DNA regulatory elements in the transcriptional control regions of target genes. In this study, we characterized the DNA binding properties of five representative members of the Hox family: HoxA5, HoxB4, HoxA7, HoxC8, and HoxB1. To facilitate a comparative analysis of their DNA binding properties, we produced the homeodomain regions of these Hox proteins in Escherichia coli and obtained highly purified polypeptides. We showed that these Hox proteins interact in vitro with a common consensus DNA site that contains the motif (C/G)TAATTG. We further showed that the Hox proteins recognize the consensus DNA site in vivo, as determined by their ability to activate transcription through this site in transient transfection assays. Although they interact optimally with the consensus DNA site, the Hox proteins exhibit subtle, but distinct, preferences for DNA sites that contain variations of the nucleotides within the consensus motif. In addition to their modest differences in DNA binding specificities, the Hox proteins also vary in their relative affinities for DNA. Intriguingly, their relative affinities correlate with the positions of their respective genes on the hox cluster. These findings suggest that subtle differences in DNA binding specificity combined with differences in DNA binding affinity constitute features of the "Hox code" that contribute to the selective functions of Hox proteins during murine embryogenesis.


2013 ◽  
Vol 42 (4) ◽  
pp. 2138-2146 ◽  
Author(s):  
Jose M. Muiño ◽  
Cezary Smaczniak ◽  
Gerco C. Angenent ◽  
Kerstin Kaufmann ◽  
Aalt D.J. van Dijk

Abstract Plant MADS-domain transcription factors act as key regulators of many developmental processes. Despite the wealth of information that exists about these factors, the mechanisms by which they recognize their cognate DNA-binding site, called CArG-box (consensus CCW6GG), and how different MADS-domain proteins achieve DNA-binding specificity, are still largely unknown. We used information from in vivo ChIP-seq experiments, in vitro DNA-binding data and evolutionary conservation to address these important questions. We found that structural characteristics of the DNA play an important role in the DNA binding of plant MADS-domain proteins. The central region of the CArG-box largely resembles a structural motif called ‘A-tract’, which is characterized by a narrow minor groove and may assist bending of the DNA by MADS-domain proteins. Periodically spaced A-tracts outside the CArG-box suggest additional roles for this structure in the process of DNA binding of these transcription factors. Structural characteristics of the CArG-box not only play an important role in DNA-binding site recognition of MADS-domain proteins, but also partly explain differences in DNA-binding specificity of different members of this transcription factor family and their heteromeric complexes.


Biochemistry ◽  
1994 ◽  
Vol 33 (19) ◽  
pp. 5689-5695 ◽  
Author(s):  
Andrew C. Jamieson ◽  
Sung-Hou Kim ◽  
James A. Wells

Sign in / Sign up

Export Citation Format

Share Document