scholarly journals Transcriptional silencing by unliganded thyroid hormone receptor beta requires a soluble corepressor that interacts with the ligand-binding domain of the receptor.

1996 ◽  
Vol 16 (5) ◽  
pp. 1909-1920 ◽  
Author(s):  
G X Tong ◽  
M Jeyakumar ◽  
M R Tanen ◽  
M K Bagchi

Unliganded thyroid hormone receptor (TR) functions as a transcriptional repressor of genes bearing thyroid hormone response elements in their promoters. Binding of hormonal ligand to the receptor releases the transcriptional silencing and leads to gene activation. Previous studies showed that the silencing activity of TR is located within the C-terminal ligand-binding domain (LBD) of the receptor. To dissect the role of the LBD in receptor-mediated silencing, we used a cell-free transcription system containing HeLa nuclear extracts in which exogenously added unliganded TRbeta repressed the basal level of RNA polymerase II-driven transcription from a thyroid hormone response element-linked template. We designed competition experiments with a peptide fragment containing the entire LBD (positions 145 to 456) of TRbeta. This peptide, which lacks the DNA-binding domain, did not affect basal RNA synthesis from the thyroid hormone response element-linked promoter when added to a cell-free transcription reaction mixture. However, the addition of the LBD peptide to a reaction mixture containing TRbeta led to a complete reversal of receptor-mediated transcriptional silencing in the absence of thyroid hormone. An LBD peptide harboring point mutations, which severely impair receptor dimerization, also inhibited efficiently the silencing activity of TR, indicating that the relief of repression by the LBD was not due to the sequestration of TR or its heterodimeric partner retinoid X receptor into inactive homo- or heterodimers. We postulate that the LBD peptide competed with TR for a regulatory molecule, termed a corepressor, that exists in the HeLa nuclear extracts and is essential for efficient receptor-mediated gene repression. We have identified the region from positions 145 to 260 (the D domain) of the LBD as a potential binding site of the putative corepressor. We observed further that a peptide containing the LBD of retinoic acid receptor (RAR) competed for TR-mediated silencing, suggesting that the RAR LBD may bind to the same corepressor activity as the TR LBD. Interestingly, the RAR LBD complexed with its cognate ligand, all-trans retinoic acid, failed to compete for transcriptional silencing by TRbeta, indicating that the association of the LBD with the corepressor is ligand dependent. Finally, we provide strong biochemical evidence supporting the existence of the corepressor activity in the HeLa nuclear extracts. Our studies demonstrated that the silencing activity of TR was greatly reduced in the nuclear extracts preincubated with immobilized, hormone-free glutathione S-transferase-LBD fusion proteins, indicating that the corepressor activity was depleted from these extracts through protein-protein interactions with the LBD. Similar treatment with immobilized, hormone-bound glutathione S-transferase-LBD, on the other hand, failed to deplete the corepressor activity from the nuclear extracts, indicating that ligand binding to the LBD disrupts its interaction with the corepressor. From these results, we propose that a corepressor binds to the LBD of unliganded TR and critically influences the interaction of the receptor with the basal transcription machinery to promote silencing. Ligand binding to TR results in the release of the corepressor from the LBD and triggers the reversal of silencing by allowing the events leading to gene activation to proceed.

1998 ◽  
Vol 12 (1) ◽  
pp. 34-44 ◽  
Author(s):  
Ying Liu ◽  
Akira Takeshita ◽  
Takashi Nagaya ◽  
Aria Baniahmad ◽  
William W. Chin ◽  
...  

Abstract We have employed a chimeric receptor system in which we cotransfected yeast GAL4 DNA-binding domain/retinoid X receptor β ligand-binding domain chimeric receptor (GAL4RXR), thyroid hormone receptor-β (TRβ), and upstream activating sequence-reporter plasmids into CV-1 cells to study repression, derepression, and transcriptional activation. In the absence of T3, unliganded TR repressed transcription to 20% of basal level, and in the presence of T3, liganded TRβ derepressed transcription to basal level. Using this system and a battery of TRβ mutants, we found that TRβ/RXR heterodimer formation is necessary and sufficient for basal repression and derepression in this system. Additionally, an AF-2 domain mutant (E457A) mediated basal repression but not derepression, suggesting that interaction with a putative coactivator at this site may be critical for derepression. Interestingly, a mutant containing only the TRβ ligand binding domain (LBD) not only mediated derepression, but also stimulated transcriptional activation 10-fold higher than basal level. Studies using deletion and domain swap mutants localized an inhibitory region to the TRβ DNA-binding domain. Titration studies further suggested that allosteric changes promoting interaction with coactivators may account for enhanced transcriptional activity by LBD. In summary, our findings suggest that TR heterodimer formation with RXR is important for repression and derepression, and coactivator interaction with the AF-2 domain may be needed for derepression in this chimeric system. Additionally, there may be an inhibitory region in the DNA-binding domain, which reduces TR interaction with coactivators, and prevents full-length wild-type TRβ from achieving transcriptional activation above basal level in this chimeric receptor system.


2002 ◽  
Vol 22 (19) ◽  
pp. 6831-6841 ◽  
Author(s):  
Anna N. Moraitis ◽  
Vincent Giguère ◽  
Catherine C. Thompson

ABSTRACT Transcriptional regulation by nuclear receptors is controlled by the concerted action of coactivator and corepressor proteins. The product of the thyroid hormone-regulated mammalian gene hairless (Hr) was recently shown to function as a thyroid hormone receptor corepressor. Here we report that Hr acts as a potent repressor of transcriptional activation by RORα, an orphan nuclear receptor essential for cerebellar development. In contrast to other corepressor-nuclear receptor interactions, Hr binding to RORα is mediated by two LXXLL-containing motifs, a mechanism associated with coactivator interaction. Mutagenesis of conserved amino acids in the ligand binding domain indicates that RORα activity is ligand-dependent, suggesting that corepressor activity is maintained in the presence of ligand. Despite similar recognition helices shared with coactivators, Hr does not compete for the same molecular determinants at the surface of the RORα ligand binding domain, indicating that Hr-mediated repression is not simply through displacement of coactivators. Remarkably, the specificity of Hr corepressor action can be transferred to a retinoic acid receptor by exchanging the activation function 2 (AF-2) helix. Repression of the chimeric receptor is observed in the presence of retinoic acid, demonstrating that in this context, Hr is indeed a ligand-oblivious nuclear receptor corepressor. These results suggest a novel molecular mechanism for corepressor action and demonstrate that the AF-2 helix can play a dynamic role in controlling corepressor as well as coactivator interactions. The interaction of Hr with RORα provides direct evidence for the convergence of thyroid hormone and RORα-mediated pathways in cerebellar development.


Sign in / Sign up

Export Citation Format

Share Document