scholarly journals Functional dissection of the B" component of RNA polymerase III transcription factor IIIB: a scaffolding protein with multiple roles in assembly and initiation of transcription.

1997 ◽  
Vol 17 (4) ◽  
pp. 1868-1880 ◽  
Author(s):  
A Kumar ◽  
G A Kassavetis ◽  
E P Geiduschek ◽  
M Hambalko ◽  
C J Brent

Transcription factor IIIB (TFIIIB), the central transcription factor of Saccharomyces cerevisiae RNA polymerase III, is composed of TATA-binding protein, the TFIIB-related protein Brf, and B". B", the last component to enter the TFIIIB-DNA complex, confers extremely tight DNA binding on TFIIIB. Terminally and internally deleted B" derivatives were tested for competence to form TFIIIB-DNA complexes by TFIIIC-dependent and -independent pathways on the SUP4 tRNA(Tyr) and U6 snRNA (SNR6) genes, respectively, and for transcription. Selected TFIIIB-TFIIIC-DNA complexes assembled with truncated B" were analyzed by DNase I footprinting, and the surface topography of B" in the TFIIIB-DNA complex was also analyzed by hydroxyl radical protein footprinting. These analyses define functional domains of B" and also reveal roles in start site selection by RNA polymerase III and in clearing TFIIIC from the transcriptional start. Although absolutely required for transcription, B" can be extensively truncated. Core proteins retaining as few as 176 (of 594) amino acids remain competent to transcribe the SNR6 gene in vitro. TFIIIC-dependent assembly on DNA and transcription requires a larger core of B": two domains (I and II) that are required for SNR6 transcription on an either-or basis are simultaneously required for TFIIIC-dependent assembly of DNA complexes and transcription. Domains I and II of B" are buried upon assembly of the TFIIIB-DNA complex, as determined by protein footprinting. The picture of the TFIIIB-DNA complex that emerges is that B" serves as its scaffold and is folded over in the complex so that domains I and II are near one another.

1997 ◽  
Vol 17 (9) ◽  
pp. 5299-5306 ◽  
Author(s):  
G A Kassavetis ◽  
C Bardeleben ◽  
A Kumar ◽  
E Ramirez ◽  
E P Geiduschek

Saccharomyces cerevisiae transcription factor IIIB (TFIIIB) is composed of three subunits: the TATA-binding protein, the TFIIB-related protein Brf, and B". TFIIIB, which is brought to RNA polymerase III-transcribed genes indirectly through interaction with DNA-bound TFIIIC or directly through DNA recognition by the TATA-binding protein, in turn recruits RNA polymerase III to the promoter. N-terminally deleted derivatives of Brf have been examined for their ability to interact with DNA-bound TFIIIC and with the other components of TFIIIB and for participation in transcription. Brf(165-596), lacking 164 N-proximal TFIIB-homologous amino acids, is competent to participate in the assembly of TFIIIB-DNA complexes and in TFIIIC-independent transcription. Even deletion of the entire TFIIB-homologous half of the protein, as in Brf(317-596) and Brf(352-596), allows some interaction with DNA-bound TBP and with the B" component of TFIIIB to be retained. The function of Brf(165-596) in transcription has also been examined in the context of B" with small internal deletions. The ability of Brf with this sizable N-terminal segment deleted to function in TFIIIC-independent transcription requires segments of B" that are individually indispensable although required on an either/or basis, in the context of complete Brf. These findings suggest a functional complementarity and reciprocity between the Brf and B" components of TFIIIB.


1999 ◽  
Vol 274 (40) ◽  
pp. 28736-28744 ◽  
Author(s):  
Sheila M. A. Shah ◽  
Ashok Kumar ◽  
E. Peter Geiduschek ◽  
George A. Kassavetis

2004 ◽  
Vol 24 (9) ◽  
pp. 3596-3606 ◽  
Author(s):  
Sushma Shivaswamy ◽  
George A. Kassavetis ◽  
Purnima Bhargava

ABSTRACT Transcription of the U6 snRNA gene (SNR6) in Saccharomyces cerevisiae by RNA polymerase III (pol III) requires TFIIIC and its box A and B binding sites. In contrast, TFIIIC has little or no effect on SNR6 transcription with purified components in vitro due to direct recognition of the SNR6 TATA box by TFIIIB. When SNR6 was assembled into chromatin in vitro by use of the Drosophila melanogaster S-190 extract, transcription of these templates with highly purified yeast pol III, TFIIIC, and TFIIIB displayed a near-absolute requirement for TFIIIC but yielded a 5- to 15-fold-higher level of transcription relative to naked DNA (>100-fold activation over repressed chromatin). Analysis of chromatin structure demonstrated that TFIIIC binding leads to remodeling of U6 gene chromatin, resulting in positioning of a nucleosome between boxes A and B. The resulting folding of the intervening DNA into the nucleosome could bring the suboptimally spaced SNR6 box A and B elements into greater proximity and thus facilitate activation of transcription. In the absence of ATP, however, the binding of TFIIIC to box B in chromatin was not accompanied by remodeling and the transcription activation was ∼35% of that seen in its presence, implying that both TFIIIC binding and ATP-dependent chromatin remodeling were required for the full activation of the gene. Our results suggest that TFIIIC, which is a basal transcription factor of pol III, also plays a direct role in remodeling chromatin on the SNR6 gene.


Cell ◽  
1987 ◽  
Vol 51 (1) ◽  
pp. 71-79 ◽  
Author(s):  
Philippe Carbon ◽  
Sylvie Murgo ◽  
Jean-Pierre Ebel ◽  
Alain Krol ◽  
Graham Tebb ◽  
...  

2015 ◽  
Vol 35 (10) ◽  
pp. 1848-1859 ◽  
Author(s):  
Damian Graczyk ◽  
Robert J. White ◽  
Kevin M. Ryan

Inflammation in the tumor microenvironment has many tumor-promoting effects. In particular, tumor-associated macrophages (TAMs) produce many cytokines which can support tumor growth by promoting survival of malignant cells, angiogenesis, and metastasis. Enhanced cytokine production by TAMs is tightly coupled with protein synthesis. In turn, translation of proteins depends on tRNAs, short abundant transcripts that are made by RNA polymerase III (Pol III). Here, we connect these facts by showing that stimulation of mouse macrophages with lipopolysaccharides (LPS) from the bacterial cell wall causes transcriptional upregulation of tRNA genes. The transcription factor NF-κB is a key transcription factor mediating inflammatory signals, and we report that LPS treatment causes an increased association of the NF-κB subunit p65 with tRNA genes. In addition, we show that p65 can directly associate with the Pol III transcription factor TFIIIB and that overexpression of p65 induces Pol III-dependent transcription. As a consequence of these effects, we show that inhibition of Pol III activity in macrophages restrains cytokine secretion and suppresses phagocytosis, two key functional characteristics of these cells. These findings therefore identify a radical new function for Pol III in the regulation of macrophage function which may be important for the immune responses associated with both normal and malignant cells.


Sign in / Sign up

Export Citation Format

Share Document