scholarly journals I-SceI-Induced Gene Replacement at a Natural Locus in Embryonic Stem Cells

1998 ◽  
Vol 18 (3) ◽  
pp. 1444-1448 ◽  
Author(s):  
Michel Cohen-Tannoudji ◽  
Sylvie Robine ◽  
André Choulika ◽  
Daniel Pinto ◽  
Fatima El Marjou ◽  
...  

ABSTRACT Gene targeting is a very powerful tool for studying mammalian development and physiology and for creating models of human diseases. In many instances, however, it is desirable to study different modifications of a target gene, but this is limited by the generally low frequency of homologous recombination in mammalian cells. We have developed a novel gene-targeting strategy in mouse embryonic stem cells that is based on the induction of endogenous gap repair processes at a defined location within the genome by induction of a double-strand break (DSB) in the gene to be mutated. This strategy was used to knock in an NH2-ezrin mutant in the villin gene, which encodes an actin-binding protein expressed in the brush border of the intestine and the kidney. To induce the DSB, an I-SceI yeast meganuclease restriction site was first introduced by gene targeting to the villin gene, followed by transient expression of I-SceI. The repair of the ensuing DSB was achieved with high efficiency (6 × 10−6) by a repair shuttle vector sharing only a 2.8-kb region of homology with the villin gene and no negative selection marker. Compared to conventional gene-targeting experiments at the villin locus, this represents a 100-fold stimulation of gene-targeting frequency, notwithstanding a much lower length of homology. This strategy will be very helpful in facilitating the targeted introduction of several types of mutations within a gene of interest.

1991 ◽  
Vol 11 (11) ◽  
pp. 5586-5591 ◽  
Author(s):  
P Hasty ◽  
J Rivera-Pérez ◽  
A Bradley

Homologous recombination has been used to introduce site-specific mutations into murine embryonic stem (ES) cells with both insertion and replacement vectors. In this study, we compared the frequency of gene targeting with various lengths of homology and found a dramatic increase in targeting with an increase in homology from 1.3 to 6.8 kb. We examined in detail the relationship between the length of homology and the gene-targeting frequency for replacement vectors and found that a critical length of homology is needed for targeting. Adding greater lengths of homology to this critical length has less of an effect on the targeting frequency. We also analyzed the lengths of homology necessary on both arms of the vector for gene replacement events and found that 472 bp of homology is used as efficiently as 1.2 kb in the formation and resolution of crossover junctions.


1991 ◽  
Vol 11 (11) ◽  
pp. 5586-5591 ◽  
Author(s):  
P Hasty ◽  
J Rivera-Pérez ◽  
A Bradley

Homologous recombination has been used to introduce site-specific mutations into murine embryonic stem (ES) cells with both insertion and replacement vectors. In this study, we compared the frequency of gene targeting with various lengths of homology and found a dramatic increase in targeting with an increase in homology from 1.3 to 6.8 kb. We examined in detail the relationship between the length of homology and the gene-targeting frequency for replacement vectors and found that a critical length of homology is needed for targeting. Adding greater lengths of homology to this critical length has less of an effect on the targeting frequency. We also analyzed the lengths of homology necessary on both arms of the vector for gene replacement events and found that 472 bp of homology is used as efficiently as 1.2 kb in the formation and resolution of crossover junctions.


Stem Cells ◽  
2008 ◽  
Vol 26 (6) ◽  
pp. 1436-1443 ◽  
Author(s):  
Kristi A. Hohenstein ◽  
April D. Pyle ◽  
Jing Yi Chern ◽  
Leslie F. Lock ◽  
Peter J. Donovan

2012 ◽  
Vol 39 (6) ◽  
pp. 275-280 ◽  
Author(s):  
Chang Tong ◽  
Guanyi Huang ◽  
Charles Ashton ◽  
Hongping Wu ◽  
Hexin Yan ◽  
...  

2020 ◽  
Author(s):  
Ridim D Mote ◽  
Jyoti Yadav ◽  
Surya Bansi Singh ◽  
Mahak Tiwari ◽  
Shivprasad Patil ◽  
...  

AbstractMouse embryonic stem cells (mESCs) display unique mechanical properties, including low cell stiffness, and specific responses to features of the underlying substratum. Using atomic force microscopy (AFM), we demonstrate that mESCs lacking the clathrin heavy chain (Cltc), display higher Young’s modulus, indicative of greater cellular stiffness, in comparison to WT mESCs. We have previously shown that mESCs lacking Cltc display a loss of pluripotency, and an initiation of differentiation. The increased stiffness observed in these cells was accompanied by the presence of actin stress fibres and accumulation of the inactive, phosphorylated, actin binding protein, Cofilin. Treatment of Cltc knockdown mESCs with actin polymerization inhibitors resulted in a decrease in the Young’s modulus, to values similar to those obtained with WT mESCs. However, the expression profile of pluripotency factors was not rescued. This indicates that a restoration of mechanical properties, through modulation of the actin cytoskeleton, may not always be accompanied by a change in the expression of critical transcription factors that regulate the state of a stem cell, and that this may be dependent on the presence of active endocytosis in a cell.


2015 ◽  
Vol 15 (1) ◽  
pp. 182-189 ◽  
Author(s):  
Julien Jean Pierre Maury ◽  
Chadi A. EL Farran ◽  
Daniel Ng ◽  
Yuin-Han Loh ◽  
Xuezhi Bi ◽  
...  

2017 ◽  
Vol 114 (35) ◽  
pp. 9367-9372 ◽  
Author(s):  
Teresa Olbrich ◽  
Cristina Mayor-Ruiz ◽  
Maria Vega-Sendino ◽  
Carmen Gomez ◽  
Sagrario Ortega ◽  
...  

The recent development of haploid cell lines has facilitated forward genetic screenings in mammalian cells. These lines include near-haploid human cell lines isolated from a patient with chronic myelogenous leukemia (KBM7 and HAP1), as well as haploid embryonic stem cells derived from several organisms. In all cases, haploidy was shown to be an unstable state, so that cultures of mammalian haploid cells rapidly become enriched in diploids. Here we show that the observed diploidization is due to a proliferative disadvantage of haploid cells compared with diploid cells. Accordingly, single-cell–sorted haploid mammalian cells maintain the haploid state for prolonged periods, owing to the absence of competing diploids. Although the duration of interphase is similar in haploid and diploid cells, haploid cells spend longer in mitosis, indicative of problems in chromosome segregation. In agreement with this, a substantial proportion of the haploids die at or shortly after the last mitosis through activation of a p53-dependent cytotoxic response. Finally, we show that p53 deletion stabilizes haploidy in human HAP1 cells and haploid mouse embryonic stem cells. We propose that, similar to aneuploidy or tetraploidy, haploidy triggers a p53-dependent response that limits the fitness of mammalian cells.


Sign in / Sign up

Export Citation Format

Share Document