scholarly journals The Maternal CCAAT Box Transcription Factor Which Controls GATA-2 Expression Is Novel and Developmentally Regulated and Contains a Double-Stranded-RNA-Binding Subunit

1998 ◽  
Vol 18 (9) ◽  
pp. 5557-5566 ◽  
Author(s):  
Robert L. Orford ◽  
Carl Robinson ◽  
Joanna M. Haydon ◽  
Roger K. Patient ◽  
Matthew J. Guille

ABSTRACT The transcription factor GATA-2 is expressed at high levels in the nonneural ectoderm of the Xenopus embryo at neurula stages, with lower amounts of RNA present in the ventral mesoderm and endoderm. The promoter of the GATA-2 gene contains an inverted CCAAT box conserved among Xenopus laevis, humans, chickens, and mice. We have shown that this sequence is essential for GATA-2 transcription during early development and that the factor binding it is maternal. The DNA-binding activity of this factor is detectable in nuclei and chromatin bound only when zygotic GATA-2 transcription starts. Here we report the characterization of this factor, which we call CBTF (CCAAT box transcription factor). CBTF activity mainly appears late in oogenesis, when it is nuclear, and the complex has multiple subunits. We have identified one subunit of the factor as p122, aXenopus double-stranded-RNA-binding protein. The p122 protein is perinuclear during early embryonic development but moves from the cytoplasm into the nuclei of embryonic cells at stage 9, prior to the detection of CBTF activity in the nucleus. Thus, the accumulation of CBTF activity in the nucleus is a multistep process. We show that the p122 protein is expressed mainly in the ectoderm. Expression of p122 mRNA is more restricted, mainly to the anterior ectoderm and mesoderm and to the neural tube. Two properties of CBTF, its dual role and its cytoplasm-to-nucleus translocation, are shared with other vertebrate maternal transcription factors and may be general properties of these proteins.

2021 ◽  
Author(s):  
Leah M. Williams ◽  
Sainetra Sridhar ◽  
Jason Samaroo ◽  
Ebubechi K. Adindu ◽  
Anvitha Addanki ◽  
...  

In this report, we investigate the evolution of transcription factor NF-κB by examining its structure, activity, and regulation in two protists using phylogenetic, cellular, and biochemical techniques. In Capsaspora owczarzaki (Co), we find that full-length NF-κB has an N-terminal DNA-binding domain and a C-terminal Ankyrin (ANK) repeat inhibitory domain, and its DNA-binding activity is more similar to metazoan NF-κB rather than Rel proteins. As with mammalian NF-κB proteins, removal of the ANK repeats is required for Co-NF-κB to enter the nucleus, bind DNA, and activate transcription. However, C-terminal processing of Co-NF-κB is not induced by co-expression of IKK in human cells. Exogenously expressed Co-NF-κB localizes to the nucleus in Co cells. NF-κB mRNA and DNA-binding levels differ across three life stages of Capsaspora, suggesting distinct roles for NF-κB in these life stages. RNA-seq and GO analyses identify possible gene targets and biological functions of Co-NF-κB. We also show that three NF-κB-like proteins from the choanoflagellate Acanthoeca spectabilis (As) all consist of primarily the N-terminal conserved Rel Homology domain sequences of NF-κB, and lack C-terminal ANK repeats. All three As-NF-κB proteins constitutively enter the nucleus of human and Co cells, but differ in their DNA-binding and transcriptional activation activities. Furthermore, all three As-NF-κB proteins can form heterodimers, indicating that NF-κB diversified into multi-subunit families at least two times during evolution. Overall, these results present the first functional characterization of NF-κB in a taxonomic kingdom other than Animalia and provide information about the evolution and diversification of this biologically important transcription factor.


2004 ◽  
Vol 279 (50) ◽  
pp. 52447-52455 ◽  
Author(s):  
Garry P. Scarlett ◽  
Stuart J. Elgar ◽  
Peter D. Cary ◽  
Anna M. Noble ◽  
Robert L. Orford ◽  
...  

CBTF122is a subunit of theXenopusCCAAT box transcription factor complex and a member of a family of double-stranded RNA-binding proteins that function in both transcriptional and post-transcriptional control. Here we identify a region of CBTF122containing the double-stranded RNA-binding domains that is capable of binding either RNA or DNA. We show that these domains bind A-form DNA in preference to B-form DNA and that the -59 to -31 region of the GATA-2 promoter (anin vivotarget of CCAAT box transcription factor) adopts a partial A-form structure. Mutations in the RNA-binding domains that inhibit RNA binding also affect DNA bindingin vitro. In addition, these mutations alter the ability of CBTF122fusions with engrailed transcription repressor and VP16 transcription activator domains to regulate transcription of the GATA-2 genein vivo. These data support the hypothesis that the double-stranded RNA-binding domains of this family of proteins are important for their DNA binding bothin vitroandin vivo.


1999 ◽  
Vol 274 (49) ◽  
pp. 34598-34604 ◽  
Author(s):  
Minoru Satoh ◽  
Victoria M. Shaheen ◽  
Peter N. Kao ◽  
Tetsuroh Okano ◽  
Melody Shaw ◽  
...  

2013 ◽  
Vol 153 (4) ◽  
pp. 361-369 ◽  
Author(s):  
Chang-Yi Lin ◽  
Ya-Chuan Liu ◽  
Meng-Chieh Lin ◽  
Thao Thi Nguyen ◽  
Ming F. Tam ◽  
...  

Methods ◽  
1998 ◽  
Vol 15 (3) ◽  
pp. 225-232 ◽  
Author(s):  
Bertram L. Jacobs ◽  
Jeffrey O. Langland ◽  
Teresa Brandt

1999 ◽  
Vol 19 (7) ◽  
pp. 4739-4749 ◽  
Author(s):  
Elma R. Fernandes ◽  
Robert J. Rooney

ABSTRACT The adenovirus E1A gene can act as an oncogene or a tumor suppressor, with the latter effect generally arising from the induction of apoptosis or the repression of genes that provide oncogenic growth stimuli (e.g., HER-2/c-erbB2/neu) or increased metastatic invasiveness (e.g., metalloproteases). In this study, coexpression of E1A and p50E4F, a cellular transcription factor whose DNA binding activity is stimulated by E1A, suppressed colony formation by NIH 3T3 cells and transformation of primary rat embryo fibroblasts but had no observed effect in the absence of E1A. Domains in p50E4F required for stimulation of the adenovirus E4 promoter were required for the suppressive effect, indicating a transcriptional mechanism. In serum-containing media, retroviral expression of p50E4F in E1A13S/ras-transformed NIH 3T3 fibroblasts had little effect on subconfluent cultures but accelerated a decline in viability after the cultures reached confluence. Cell death occurred by both apoptosis and necrosis, with the predominance of each process determined by culture conditions. In serum-free media, p50E4F accelerated E1A-induced apoptosis. The results suggest that p50E4F sensitizes cells to signals or conditions that cause cell death.


Biochemistry ◽  
2010 ◽  
Vol 49 (4) ◽  
pp. 679-686 ◽  
Author(s):  
Jennifer Grants ◽  
Erin Flanagan ◽  
Andrea Yee ◽  
Paul J. Romaniuk

Bacteriophage ◽  
2012 ◽  
Vol 2 (2) ◽  
pp. 79-88 ◽  
Author(s):  
Amitava Bandhu ◽  
Tridib Ganguly ◽  
Biswanath Jana ◽  
Amritangshu Chakravarty ◽  
Anindya Biswas ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document