scholarly journals Two Xenopus Proteins That Bind the 3′ End of Histone mRNA: Implications for Translational Control of Histone Synthesis during Oogenesis

1999 ◽  
Vol 19 (1) ◽  
pp. 835-845 ◽  
Author(s):  
Zeng-Feng Wang ◽  
Thomas C. Ingledue ◽  
Zbigniew Dominski ◽  
Ricardo Sanchez ◽  
William F. Marzluff

ABSTRACT Translationally inactive histone mRNA is stored in frog oocytes, and translation is activated at oocyte maturation. The replication-dependent histone mRNAs are not polyadenylated and end in a conserved stem-loop structure. There are two proteins (SLBPs) which bind the 3′ end of histone mRNA in frog oocytes. SLBP1 participates in pre-mRNA processing in the nucleus. SLBP2 is oocyte specific, is present in the cytoplasm, and does not support pre-mRNA processing in vivo or in vitro. The stored histone mRNA is bound to SLBP2. As oocytes mature, SLBP2 is degraded and a larger fraction of the histone mRNA is bound to SLBP1. The mechanism of activation of translation of histone mRNAs may involve exchange of SLBPs associated with the 3′ end of histone mRNA.

1989 ◽  
Vol 9 (11) ◽  
pp. 5134-5142 ◽  
Author(s):  
M Kozak

This paper describes in vitro experiments with two types of intramolecular duplex structures that inhibit translation in cis by preventing the formation of an initiation complex or by causing the complex to be abortive. One stem-loop structure (delta G = -30 kcal/mol) prevented mRNA from engaging 40S subunits when the hairpin occurred 12 nucleotides (nt) from the cap but had no deleterious effect when it was repositioned 52 nt from the cap. This result confirms prior in vivo evidence that the 40S subunit-factor complex, once bound to mRNA, has considerable ability to penetrate secondary structure. Consequently, translation is most sensitive to secondary structure at the entry site for ribosomes, i.e., the 5' end of the mRNA. The second stem-loop structure (hp7; delta G = -61 kcal/mol, located 72 nt from the cap) was too stable to be unwound by 40S ribosomes, hp7 did not prevent a 40S ribosomal subunit from binding but caused the 40S subunit to stall on the 5' side of the hairpin, exactly as the scanning model predicts. Control experiments revealed that 80S elongating ribosomes could disrupt duplex structures, such as hp7, that were too stable to be penetrated by the scanning 40S ribosome-factor complex. A third type of base-paired structure shown to inhibit translation in vivo involves a long-range interaction between the 5' and 3' noncoding sequences.


1989 ◽  
Vol 9 (11) ◽  
pp. 5134-5142
Author(s):  
M Kozak

This paper describes in vitro experiments with two types of intramolecular duplex structures that inhibit translation in cis by preventing the formation of an initiation complex or by causing the complex to be abortive. One stem-loop structure (delta G = -30 kcal/mol) prevented mRNA from engaging 40S subunits when the hairpin occurred 12 nucleotides (nt) from the cap but had no deleterious effect when it was repositioned 52 nt from the cap. This result confirms prior in vivo evidence that the 40S subunit-factor complex, once bound to mRNA, has considerable ability to penetrate secondary structure. Consequently, translation is most sensitive to secondary structure at the entry site for ribosomes, i.e., the 5' end of the mRNA. The second stem-loop structure (hp7; delta G = -61 kcal/mol, located 72 nt from the cap) was too stable to be unwound by 40S ribosomes, hp7 did not prevent a 40S ribosomal subunit from binding but caused the 40S subunit to stall on the 5' side of the hairpin, exactly as the scanning model predicts. Control experiments revealed that 80S elongating ribosomes could disrupt duplex structures, such as hp7, that were too stable to be penetrated by the scanning 40S ribosome-factor complex. A third type of base-paired structure shown to inhibit translation in vivo involves a long-range interaction between the 5' and 3' noncoding sequences.


2004 ◽  
Vol 15 (3) ◽  
pp. 1112-1123 ◽  
Author(s):  
David J. Lanzotti ◽  
Jeremy M. Kupsco ◽  
Xiao-Cui Yang ◽  
Zbigniew Dominski ◽  
William F. Marzluff ◽  
...  

Stem-loop binding protein (SLBP) is an essential component of the histone pre-mRNA processing machinery. SLBP protein expression was examined during Drosophila development by using transgenes expressing hemagglutinin (HA) epitope-tagged proteins expressed from the endogenous Slbp promoter. Full-length HA-dSLBP complemented a Slbp null mutation, demonstrating that it was fully functional. dSLBP protein accumulates throughout the cell cycle, in contrast to the observed restriction of mammalian SLBP to S phase. dSLBP is located in both nucleus and cytoplasm in replicating cells, but it becomes predominantly nuclear during G2. dSLBP is present in mitotic cells and is down-regulated in G1 when cells exit the cell cycle. We determined whether mutation at previously identified phosphorylation sites, T120 and T230, affected the ability of the protein to restore viability and histone mRNA processing to dSLBP null mutants. The T120A SLBP restored viability and histone pre-mRNA processing. However, the T230A mutant, located in a conserved TPNK sequence in the RNA binding domain, did not restore viability and histone mRNA processing in vivo, although it had full activity in histone mRNA processing in vitro. The T230A protein is concentrated in the cytoplasm, suggesting that it is defective in nuclear targeting, and accounting for its failure to function in histone pre-mRNA processing in vivo.


1994 ◽  
Vol 14 (3) ◽  
pp. 1709-1720 ◽  
Author(s):  
N B Pandey ◽  
A S Williams ◽  
J H Sun ◽  
V D Brown ◽  
U Bond ◽  
...  

Mammalian histone mRNAs end in a highly conserved stem-loop structure, with a six-base stem and a four-base loop. We have examined the effect of mutating the stem-loop on the expression of the histone mRNA in vivo by introducing the mutated histone genes into CHO cells by stable transfection. Point mutations have been introduced into the loop sequence and into the UA base pair at the top of the stem. Changing either the first or the third base of the conserved UYUN sequence in the loop to a purine greatly reduced expression, while changing both U's to purines abolished expression. A number of alterations in the stem sequence, including reversing the stem sequence, reversing the two base pairs at the base of the stem, or destroying the UA base pair at the top of the stem, also abolished expression. Changing the UA base pair to a CG or a UG base pair also reduced expression. The loss of expression is due to inefficient processing of the pre-mRNA, as judged by the efficiency of processing in vitro. Addition of a polyadenylation site or the wild-type histone processing signal downstream of a mutant stem-loop resulted in rescuing the processing of the mutant pre-histone mRNA. These results suggest that if the histone pre-mRNA is not rapidly processed, then it is degraded.


2002 ◽  
Vol 22 (20) ◽  
pp. 7093-7104 ◽  
Author(s):  
Ricardo Sànchez ◽  
William F. Marzluff

ABSTRACT Metazoan replication-dependent histone mRNAs end in a conserved stem-loop rather than in the poly(A) tail found on all other mRNAs. The 3′ end of histone mRNA binds a single class of proteins, the stem-loop binding proteins (SLBP). In Xenopus, there are two SLBPs: xSLBP1, the homologue of the mammalian SLBP, which is required for processing of histone pre-mRNA, and xSLBP2, which is expressed only during oogenesis and is bound to the stored histone mRNA in Xenopus oocytes. The stem-loop is required for efficient translation of histone mRNAs and substitutes for the poly(A) tail, which is required for efficient translation of other eucaryotic mRNAs. When a rabbit reticulocyte lysate is programmed with uncapped luciferase mRNA ending in the histone stem-loop, there is a three- to sixfold increase in translation in the presence of xSLBP1 while xSLBP2 has no effect on translation. Neither SLBP affected the translation of a luciferase mRNA ending in a mutant stem-loop that does not bind SLBP. Capped luciferase mRNAs ending in the stem-loop were injected into Xenopus oocytes after overexpression of either xSLBP1 or xSLBP2. Overexpression of xSLBP1 in the oocytes stimulated translation, while overexpression of xSLBP2 reduced translation of the luciferase mRNA ending in the histone stem-loop. A small region in the N-terminal portion of xSLBP1 is required to stimulate translation both in vivo and in vitro. An MS2-human SLBP1 fusion protein can activate translation of a reporter mRNA ending in an MS2 binding site, indicating that xSLBP1 only needs to be recruited to the 3′ end of the mRNA but does not need to be directly bound to the histone stem-loop to activate translation.


1994 ◽  
Vol 14 (3) ◽  
pp. 1709-1720
Author(s):  
N B Pandey ◽  
A S Williams ◽  
J H Sun ◽  
V D Brown ◽  
U Bond ◽  
...  

Mammalian histone mRNAs end in a highly conserved stem-loop structure, with a six-base stem and a four-base loop. We have examined the effect of mutating the stem-loop on the expression of the histone mRNA in vivo by introducing the mutated histone genes into CHO cells by stable transfection. Point mutations have been introduced into the loop sequence and into the UA base pair at the top of the stem. Changing either the first or the third base of the conserved UYUN sequence in the loop to a purine greatly reduced expression, while changing both U's to purines abolished expression. A number of alterations in the stem sequence, including reversing the stem sequence, reversing the two base pairs at the base of the stem, or destroying the UA base pair at the top of the stem, also abolished expression. Changing the UA base pair to a CG or a UG base pair also reduced expression. The loss of expression is due to inefficient processing of the pre-mRNA, as judged by the efficiency of processing in vitro. Addition of a polyadenylation site or the wild-type histone processing signal downstream of a mutant stem-loop resulted in rescuing the processing of the mutant pre-histone mRNA. These results suggest that if the histone pre-mRNA is not rapidly processed, then it is degraded.


2007 ◽  
Vol 12 (6) ◽  
pp. 789-799 ◽  
Author(s):  
Christine P. Donahue ◽  
Jake Ni ◽  
Eriks Rozners ◽  
Marcie A. Glicksman ◽  
Michael S. Wolfe

Alternative splicing of tau exon 10 produces tau isoforms with either 3 (3R) or 4 (4R) repeated microtubule-binding domains. Increased ratios of 4R to 3R tau expression, above the physiological 1:1, leads to neurofibrillary tangles and causes neurodegenerative disease. An RNA stem loop structure plays a significant role in determining the ratio, with decreasing stability correlating with an increase in 4R tau mRNA expression. Recent studies have shown that aminoglycosides are able to bind and stabilize the tau stem loop in vitro, suggesting that other druglike small molecules could be identified and that such molecules might lead to decreased exon 10 splicing in vivo. The authors have developed a fluorescent high-throughput fluorescent binding assay and screened a library of ∼110,000 compounds to identify candidate drugs that will bind the tau stem loop in vitro. In addition, they have developed a fluorescent-based RNA probe to assay the stabilizing effects of candiate drugs on the tau stem loop RNA. These assays should be applicable to the general problem of identifying small molecules that interact with mRNA secondary structures. ( Journal of Biomolecular Screening 2007:789-799)


2016 ◽  
Vol 213 (5) ◽  
pp. 557-570 ◽  
Author(s):  
Deirdre C. Tatomer ◽  
Esteban Terzo ◽  
Kaitlin P. Curry ◽  
Harmony Salzler ◽  
Ivan Sabath ◽  
...  

The histone locus body (HLB) assembles at replication-dependent histone genes and concentrates factors required for histone messenger RNA (mRNA) biosynthesis. FLASH (Flice-associated huge protein) and U7 small nuclear RNP (snRNP) are HLB components that participate in 3′ processing of the nonpolyadenylated histone mRNAs by recruiting the endonuclease CPSF-73 to histone pre-mRNA. Using transgenes to complement a FLASH mutant, we show that distinct domains of FLASH involved in U7 snRNP binding, histone pre-mRNA cleavage, and HLB localization are all required for proper FLASH function in vivo. By genetically manipulating HLB composition using mutations in FLASH, mutations in the HLB assembly factor Mxc, or depletion of the variant histone H2aV, we find that failure to concentrate FLASH and/or U7 snRNP in the HLB impairs histone pre-mRNA processing. This failure results in accumulation of small amounts of polyadenylated histone mRNA and nascent read-through transcripts at the histone locus. Thus, the HLB concentrates FLASH and U7 snRNP, promoting efficient histone mRNA biosynthesis and coupling 3′ end processing with transcription termination.


2005 ◽  
Vol 393 (1) ◽  
pp. 373-379 ◽  
Author(s):  
Akio Kanai ◽  
Asako Sato ◽  
Jun Imoto ◽  
Masaru Tomita

Using a stem–loop RNA oligonucleotide (19-mer) containing an AUG sequence in the loop region as a probe, we screened the protein library from a hyperthermophilic archaeon, Pyrococcus furiosus, and found that a flavin-dependent thymidylate synthase, Pf-Thy1 (Pyrococcus furiosus thymidylate synthase 1), possessed RNA-binding activity. Recombinant Pf-Thy1 was able to bind to the stem–loop structure at a high temperature (75 °C) with an apparent dissociation constant of 0.6 μM. A similar stem–loop RNA structure was located around the translation start AUG codon of Pf-Thy1 RNA, and gel-shift analysis revealed that Pf-Thy1 could also bind to this stem–loop structure. In vitro translation analysis using chimaeric constructs containing the stem–loop sequence in their Pf-Thy1 RNA and a luciferase reporter gene indicated that the stem–loop structure acted as an inhibitory regulator of translation by preventing the binding of its Shine–Dalgarno-like sequence by positioning it in the stem region. Addition of Pf-Thy1 into the in vitro translation system also inhibited translation. These results suggested that this class of thymidylate synthases may autoregulate their own translation in a manner analogous to that of the well characterized thymidylate synthase A proteins, although there is no significant amino acid sequence similarity between them.


Sign in / Sign up

Export Citation Format

Share Document