scholarly journals The Carboxyl Terminus of RNA Helicase A Contains a Bidirectional Nuclear Transport Domain

1999 ◽  
Vol 19 (5) ◽  
pp. 3540-3550 ◽  
Author(s):  
Hengli Tang ◽  
David McDonald ◽  
Tamara Middlesworth ◽  
Thomas J. Hope ◽  
Flossie Wong-Staal

ABSTRACT Human RNA helicase A was recently identified to be a shuttle protein which interacts with the constitutive transport element (CTE) of type D retroviruses. Here we show that a domain of 110 amino acids at the carboxyl terminus of helicase A is both necessary and sufficient for nuclear localization as well as rapid nuclear export of glutathioneS-transferase fusion proteins. The import and export activities of this domain overlap but are separable by point mutations. This bidirectional nuclear transport domain (NTD) has no obvious sequence homology to previously identified nuclear import or export signals. However, the Ran-dependent nuclear import of NTD was efficiently competed by excess amounts of the nuclear localization signal (NLS) peptide from simian virus 40 large T antigen, suggesting that import is mediated by the classical NLS pathway. The nuclear export pathway accessed by NTD is insensitive to leptomycin B and thus is distinct from the leucine-rich nuclear export signal pathway mediated by CRM1.

2011 ◽  
Vol 10 (12) ◽  
pp. 1607-1617 ◽  
Author(s):  
Chien-Hsin Chu ◽  
Lung-Chun Chang ◽  
Hong-Ming Hsu ◽  
Shu-Yi Wei ◽  
Hsing-Wei Liu ◽  
...  

ABSTRACT Nuclear proteins usually contain specific peptide sequences, referred to as nuclear localization signals (NLSs), for nuclear import. These signals remain unexplored in the protozoan pathogen, Trichomonas vaginalis . The nuclear import of a Myb2 transcription factor was studied here using immunodetection of a hemagglutinin-tagged Myb2 overexpressed in the parasite. The tagged Myb2 was localized to the nucleus as punctate signals. With mutations of its polybasic sequences, 48KKQK51 and 61KR62, Myb2 was localized to the nucleus, but the signal was diffusive. When fused to a C-terminal non-nuclear protein, the Myb2 sequence spanning amino acid (aa) residues 48 to 143, which is embedded within the R2R3 DNA-binding domain (aa 40 to 156), was essential and sufficient for efficient nuclear import of a bacterial tetracycline repressor (TetR), and yet the transport efficiency was reduced with an additional fusion of a firefly luciferase to TetR, while classical NLSs from the simian virus 40 T-antigen had no function in this assay system. Myb2 nuclear import and DNA-binding activity were substantially perturbed with mutation of a conserved isoleucine (I74) in helix 2 to proline that altered secondary structure and ternary folding of the R2R3 domain. Disruption of DNA-binding activity alone by point mutation of a lysine residue, K51, preceding the structural domain had little effect on Myb2 nuclear localization, suggesting that nuclear translocation of Myb2, which requires an ordered structural domain, is independent of its DNA binding activity. These findings provide useful information for testing whether myriad Mybs in the parasite use a common module to regulate nuclear import.


2014 ◽  
Vol 13 (8) ◽  
pp. 1036-1050 ◽  
Author(s):  
Charlene Hawkins ◽  
Katherine L. Friedman

ABSTRACT The Est1 (ever shorter telomeres 1) protein is an essential component of yeast telomerase, a ribonucleoprotein complex that restores the repetitive sequences at chromosome ends (telomeres) that would otherwise be lost during DNA replication. Previous work has shown that the telomerase RNA component ( TLC1 ) transits through the cytoplasm during telomerase biogenesis, but mechanisms of protein import have not been addressed. Here we identify three nuclear localization sequences (NLSs) in Est1p. Mutation of the most N-terminal NLS in the context of full-length Est1p reduces Est1p nuclear localization and causes telomere shortening—phenotypes that are rescued by fusion with the NLS from the simian virus 40 (SV40) large-T antigen. In contrast to that of the TLC1 RNA, Est1p nuclear import is facilitated by Srp1p, the yeast homolog of importin α. The reduction in telomere length observed at the semipermissive temperature in a srp1 mutant strain is rescued by increased Est1p expression, consistent with a defect in Est1p nuclear import. These studies suggest that at least two nuclear import pathways are required to achieve normal telomere length homeostasis in yeast.


2003 ◽  
Vol 375 (2) ◽  
pp. 339-349 ◽  
Author(s):  
Marcos R. M. FONTES ◽  
Trazel TEH ◽  
Gabor TOTH ◽  
Anna JOHN ◽  
Imre PAVO ◽  
...  

The nuclear import of simian-virus-40 large T-antigen (tumour antigen) is enhanced via phosphorylation by the protein kinase CK2 at Ser112 in the vicinity of the NLS (nuclear localization sequence). To determine the structural basis of the effect of the sequences flanking the basic cluster KKKRK, and the effect of phosphorylation on the recognition of the NLS by the nuclear import factor importin-α (Impα), we co-crystallized non-autoinhibited Impα with peptides corresponding to the phosphorylated and non-phosphorylated forms of the NLS, and determined the crystal structures of the complexes. The structures show that the amino acids N-terminally flanking the basic cluster make specific contacts with the receptor that are distinct from the interactions between bipartite NLSs and Impα. We confirm the important role of flanking sequences using binding assays. Unexpectedly, the regions of the peptides containing the phosphorylation site do not make specific contacts with the receptor. Binding assays confirm that phosphorylation does not increase the affinity of the T-antigen NLS to Impα. We conclude that the sequences flanking the basic clusters in NLSs play a crucial role in nuclear import by modulating the recognition of the NLS by Impα, whereas phosphorylation of the T-antigen enhances nuclear import by a mechanism that does not involve a direct interaction of the phosphorylated residue with Impα.


2000 ◽  
Vol 353 (1) ◽  
pp. 69-77 ◽  
Author(s):  
Lyndall J. BRIGGS ◽  
Ricky W. JOHNSTONE ◽  
Rachel M. ELLIOT ◽  
Chong-Yun XIAO ◽  
Michelle DAWSON ◽  
...  

Members of the interferon-induced class of nuclear factors possess a putative CcN motif, comparable with that within proteins such as the simian virus 40 large tumour antigen (T-ag), which confers phosphorylation-mediated regulation of nuclear-localization sequence (NLS)-dependent nuclear import. Here we examine the functionality of the interferon-induced factor 16 (IFI 16) CcN motif, demonstrating its ability to target a heterologous protein to the nucleus, and to be phosphorylated specifically by the CcN-motif-phosphorylating protein kinase CK2 (CK2). The IFI 16 NLS, however, has novel properties, conferring ATP-dependent nuclear import completely independent of cytosolic factors, as well as binding to nuclear components. The IFI 16 NLS is not recognized with high affinity by the NLS-binding importin heterodimer, and transport mediated by it is insensitive to non-hydrolysable GTP analogues. The IFI 16 NLS thus mediates nuclear import through a pathway completely distinct from that of conventional NLSs, such as that of T-ag, but intriguingly resembling that of the NLS of the HIV-1 transactivator protein Tat. Since the IFI 16 CK2 site enhances nuclear import through facilitating binding to nuclear components, this represents a novel mechanism by which the site regulates nuclear-protein import, and constitutes a difference between the IFI 16 and Tat NLSs that may be of importance in the immune response.


1994 ◽  
Vol 107 (7) ◽  
pp. 1807-1816 ◽  
Author(s):  
C. Kambach ◽  
I.W. Mattaj

Experiments investigating the nuclear import of the U2 snRNP-specific B'' protein (U2B'') are presented. U2B'' nuclear transport is shown to be able to occur independently of binding to U2 snRNA. The central segment of the protein (amino acids 90–146) encodes an unusual nuclear localization signal (NLS) that is related to that of the U1 snRNP-specific A protein. However, nuclear import of U2B'' does not depend on this NLS. Sequences in the N-terminal RNP motif of the protein are sufficient to direct nuclear transport, and evidence is presented that the interaction of U2B'' with the U2A' protein mediates this effect. This suggests that U2B'' can ‘piggy-back’ to the nucleus in association with U2A’, and thus be imported to the nucleus by two different mechanisms. U2A' nuclear transport, on the other hand, can occur independently of both U2B'' binding and of U2 snRNA.


1989 ◽  
Vol 9 (7) ◽  
pp. 3028-3036
Author(s):  
L Yamasaki ◽  
P Kanda ◽  
R E Lanford

The transport of proteins into the nucleus requires not only the presence of a nuclear transport signal on the targeted protein but also the signal recognition proteins and the nuclear pore translocation apparatus. Complicating the search for the signal recognition proteins is the fact that the nuclear transport signals identified share little obvious homology. In this study, synthetic peptides homologous to the nuclear transport signals from the simian virus 40 large T antigen, Xenopus oocyte nucleoplasmin, adenovirus E1A, and Saccharomyces cerevisiae MAT alpha 2 proteins were coupled to a UV-photoactivable cross-linker and iodinated for use in an in vitro cross-linking reaction with cellular lysates. Four proteins, p140, p100, p70, and p55, which specifically interacted with the nuclear transport signal peptides were identified. Unique patterns of reactivity were observed with closely related pairs of nuclear transport signal peptides. Competition experiments with labeled and unlabeled peptides demonstrated that heterologous signals were able to bind the same protein and suggested that diverse signals use a common transport pathway. The subcellular distribution of the four nuclear transport signal-binding proteins suggested that nuclear transport involves both cytoplasmic and nuclear receptors. The four proteins were not bound by wheat germ agglutinin and were not associated tightly with the nuclear pore complex.


1992 ◽  
Vol 119 (5) ◽  
pp. 1047-1061 ◽  
Author(s):  
N Imamoto ◽  
Y Matsuoka ◽  
T Kurihara ◽  
K Kohno ◽  
M Miyagi ◽  
...  

Previously, we found that anti-DDDED antibodies strongly inhibited in vivo nuclear transport of nuclear proteins and that these antibodies recognized a protein of 69 kD (p69) from rat liver nuclear envelopes that showed specific binding activities to the nuclear location sequences (NLSs) of nucleoplasmin and SV-40 large T-antigen. Here we identified this protein as the 70-kD heat shock cognate protein (hsc70) based on its mass, isoelectric point, cellular localization, and partial amino acid sequences. Competition studies indicated that the recombinant hsc70 expressed in Escherichia coli binds to transport competent SV-40 T-antigen NLS more strongly than to the point mutated transport incompetent mutant NLS. To investigate the possible involvement of hsc70 in nuclear transport, we examined the effect of anti-hsc70 rabbit antibodies on the nuclear accumulation of karyophilic proteins. When injected into the cytoplasm of tissue culture cells, anti-hsc70 strongly inhibited the nuclear import of nucleoplasmin, SV-40 T-antigen NLS bearing BSA and histone H1. In contrast, anti-hsc70 IgG did not prevent the diffusion of lysozyme or 17.4-kD FITC-dextran into the nuclei. After injection of these antibodies, cells continued RNA synthesis and were viable. These results indicate that hsc70 interacts with NLS-containing proteins in the cytoplasm before their nuclear import.


2000 ◽  
Vol 20 (20) ◽  
pp. 7798-7812 ◽  
Author(s):  
Van-Dinh Dang ◽  
Henry L. Levin

ABSTRACT Retroviruses, such as human immunodeficiency virus, that infect nondividing cells generate integration precursors that must cross the nuclear envelope to reach the host genome. As a model for retroviruses, we investigated the nuclear entry of Tf1, a long-terminal-repeat-containing retrotransposon of the fission yeastSchizosaccharomyces pombe. Because the nuclear envelope of yeasts remains intact throughout the cell cycle, components of Tf1 must be transported through the envelope before integration can occur. The nuclear localization of the Gag protein of Tf1 is different from that of other proteins tested in that it has a specific requirement for the FXFG nuclear pore factor, Nup124p. Using extensive mutagenesis, we found that Gag contained three nuclear localization signals (NLSs) which, when included individually in a heterologous protein, were sufficient to direct nuclear import. In the context of the intact transposon, mutations in the NLS that mapped to the first 10 amino acid residues of Gag significantly impaired Tf1 retrotransposition and abolished nuclear localization of Gag. Interestingly, this NLS activity in the heterologous protein was specifically dependent upon the presence of Nup124p. Deletion analysis of heterologous proteins revealed the surprising result that the residues in Gag with the NLS activity were independent from the residues that conveyed the requirement for Nup124p. In fact, a fragment of Gag that lacked NLS activity, residues 10 to 30, when fused to a heterologous protein, was sufficient to cause the classical NLS of simian virus 40 to require Nup124p for nuclear import. Within the context of the current understanding of nuclear import, these results represent the novel case of a short amino acid sequence that specifies the need for a particular nuclear pore complex protein.


1985 ◽  
Vol 5 (6) ◽  
pp. 1531-1533 ◽  
Author(s):  
R E Lanford ◽  
J K Hyland ◽  
R Baserga ◽  
J S Butel

The simian virus 40 (SV40) (cT)-3 mutant [SV40(cT)-3], which is defective in nuclear transport of T antigen, was utilized to determine whether cellular DNA synthesis can be stimulated by SV40 in the absence of detectable nuclear T antigen. Cellular DNA synthesis was examined in the temperature-sensitive cell cycle mutants, BHK ts13 and BHK tsAF8, after microinjection of quiescent cells with plasmid DNA containing cloned copies of wild-type SV40 or SV40(cT)-3. The efficiency of induction of cellular DNA synthesis was identical for both wild-type SV40 and SV40(cT)-3 in both cell lines. The results suggest that cell surface-associated T antigen, either alone or possibly in combination with minimal amounts of nuclear T antigen below our limit of detection, is able to stimulate cellular DNA synthesis.


Sign in / Sign up

Export Citation Format

Share Document