scholarly journals Protein Kinase C δ Activates Topoisomerase IIα To Induce Apoptotic Cell Death in Response to DNA Damage

2006 ◽  
Vol 26 (9) ◽  
pp. 3414-3431 ◽  
Author(s):  
Kiyotsugu Yoshida ◽  
Tomoko Yamaguchi ◽  
Hirokuni Shinagawa ◽  
Naoe Taira ◽  
Keiichi I. Nakayama ◽  
...  

ABSTRACT DNA topoisomerase II is an essential nuclear enzyme that modulates DNA processes by altering the topological state of double-stranded DNA. This enzyme is required for chromosome condensation and segregation; however, the regulatory mechanism of its activation is largely unknown. Here we demonstrate that topoisomerase IIα is activated in response to genotoxic stress. Concomitant with the activation, the expression of topoisomerase IIα is increased following DNA damage. The results also demonstrate that the proapoptotic kinase protein kinase C δ (PKCδ) interacts with topoisomerase IIα. This association is in an S-phase-specific manner and is required for stabilization and catalytic activation of topoisomerase IIα in response to DNA damage. Conversely, inhibition of PKCδ activity attenuates DNA damage-induced activation of topoisomerase IIα. Finally, aberrant activation of topoisomerase IIα by PKCδ is associated with induction of apoptosis upon exposure to genotoxic agents. These findings indicate that PKCδ regulates topoisomerase IIα and thereby cell fate in the genotoxic stress response.

2007 ◽  
Vol 27 (24) ◽  
pp. 8480-8491 ◽  
Author(s):  
Hanshao Liu ◽  
Zheng-Guang Lu ◽  
Yoshio Miki ◽  
Kiyotsugu Yoshida

ABSTRACT Expression of the TP53 tumor suppressor is tightly controlled for its ability to function as a critical regulator of cell growth, proliferation, and death in response to DNA damage. However, little is known about the mechanisms and contributions of the transcriptional regulation of TP53. Here we report that protein kinase C δ (PKCδ), a ubiquitously expressed member of the novel subfamily of PKC isoforms, transactivates TP53 expression at the transcriptional level. Reporter assays demonstrated that PKCδ induces the promoter activity of TP53 through the TP53 core promoter element (CPE-TP53) and that such induction is enhanced in response to DNA damage. The results also demonstrate that, upon exposure to genotoxic stress, PKCδ activates and interacts with the death-promoting transcription factor Btf to co-occupy CPE-TP53. Inhibition of PKCδ activity decreases the affinity of Btf for CPE-TP53, thereby reducing TP53 expression at both the mRNA and the protein levels. In concert with these results, we show that disruption of Btf-mediated TP53 gene transcription by RNA interference leads to suppression of TP53-mediated apoptosis following genotoxic stress. These findings provide evidence that activation of TP53 gene transcription by PKCδ triggers TP53-dependent apoptosis in response to DNA damage.


1994 ◽  
Vol 2 (12) ◽  
pp. 1403-1411 ◽  
Author(s):  
Kenneth F. Bastow ◽  
Masataka Itoigawa ◽  
Hiroshi Furukawa ◽  
Yoshiki Kashiwada ◽  
Ibrahim D. Bori ◽  
...  

1992 ◽  
Vol 119 (6) ◽  
pp. 1641-1648 ◽  
Author(s):  
B T Livingston ◽  
F H Wilt

Protein kinase C (PKC) has been implicated as important in controlling cell differentiation during embryonic development. We have examined the ability of 12-O-tetradecanoyl phorbol-13-acetate (TPA), an activator of PKC, to alter the differentiation of cells during sea urchin development. Addition of TPA to embryos for 10-15 min during early cleavage caused dramatic changes in their development during gastrulation. Using tissue-specific antibodies, we have shown that TPA causes the number of cells that differentiate as endoderm and mesoderm to increase relative to the number that differentiate as ectoderm. cDNA probes show that treatment with TPA causes an increase in accumulation of RNAs specific to endoderm and mesoderm with a concomitant decrease in RNAs specific to ectoderm. Treatment of isolated prospective ectodermal cells with TPA causes them to differentiate into endoderm and mesoderm. The critical period for TPA to alter development is during early to mid cleavage, and treatment of embryos with TPA after that time has little effect. These results indicate that PKC may play a key role in determining the fate of cells during sea urchin development.


Sign in / Sign up

Export Citation Format

Share Document