scholarly journals Sensitivity to UV radiation of small nuclear RNA synthesis in mammalian cells.

1983 ◽  
Vol 3 (12) ◽  
pp. 2151-2155 ◽  
Author(s):  
G L Eliceiri ◽  
J H Smith

It was demonstrated previously that the synthesis of small nuclear RNA (snRNA) species U1 and U2 in human cells is very sensitive to UV radiation. In the present work, the UV sensitivity of U3, U4, and U5 snRNA synthesis is shown to be also high. The synthesis of U1, U2, U3, U4, and U5 snRNAs progressively decreased during the first 2 h after UV irradiation (this was not observed in polyadenylated RNA) and had not returned to normal rates 6 h after UV exposure. In contrast, the restoration of 5.8S rRNA synthesis began immediately after UV irradiation and was essentially complete 6 h later. A small fraction of U1 and U5 (and possibly U2 and U3) snRNA synthesis remained unaffected by high UV doses, when cell radiolabeling began 10 min after UV irradiation. The present data suggest that a factor other than the level of pyrimidine dimers in DNA (possibly, steps in the post-irradiation DNA repair process) plays an important role in the mechanism of UV-induced inhibition of U1-U5 snRNA synthesis.

1983 ◽  
Vol 3 (12) ◽  
pp. 2151-2155
Author(s):  
G L Eliceiri ◽  
J H Smith

It was demonstrated previously that the synthesis of small nuclear RNA (snRNA) species U1 and U2 in human cells is very sensitive to UV radiation. In the present work, the UV sensitivity of U3, U4, and U5 snRNA synthesis is shown to be also high. The synthesis of U1, U2, U3, U4, and U5 snRNAs progressively decreased during the first 2 h after UV irradiation (this was not observed in polyadenylated RNA) and had not returned to normal rates 6 h after UV exposure. In contrast, the restoration of 5.8S rRNA synthesis began immediately after UV irradiation and was essentially complete 6 h later. A small fraction of U1 and U5 (and possibly U2 and U3) snRNA synthesis remained unaffected by high UV doses, when cell radiolabeling began 10 min after UV irradiation. The present data suggest that a factor other than the level of pyrimidine dimers in DNA (possibly, steps in the post-irradiation DNA repair process) plays an important role in the mechanism of UV-induced inhibition of U1-U5 snRNA synthesis.


1993 ◽  
Vol 13 (5) ◽  
pp. 2666-2676 ◽  
Author(s):  
J B Cohen ◽  
S D Broz ◽  
A D Levinson

Pre-mRNA 5' splice site activity depends, at least in part, on base complementarity to U1 small nuclear RNA. In transient coexpression assays, defective 5' splice sites can regain activity in the presence of U1 carrying compensatory changes, but it is unclear whether such mutant U1 RNAs can be permanently expressed in mammalian cells. We have explored this issue to determine whether U1 small nuclear RNAs with altered specificity may be of value to rescue targeted mutant genes or alter pre-mRNA processing profiles. This effort was initiated following our observation that U1 with specificity for a splice site associated with an alternative H-ras exon substantially reduced the synthesis of the potentially oncogenic p21ras protein in transient assays. We describe the development of a mammalian complementation system that selects for removal of a splicing-defective intron placed within a drug resistance gene. Complementation was observed in proportion to the degree of complementarity between transfected mutant U1 genes and different defective splice sites, and all cells selected in this manner were found to express mutant U1 RNA. In addition, these cells showed specific activation of defective splice sites presented by an unlinked reporter gene. We discuss the prospects of this approach to permanently alter the expression of targeted genes in mammalian cells.


1988 ◽  
Vol 8 (6) ◽  
pp. 2428-2434
Author(s):  
J M Treger ◽  
J Hauser ◽  
K Dixon

Irradiation of simian virus 40 (SV40)-infected cells with low fluences of UV light (20 to 60 J/m2, inducing one to three pyrimidine dimers per SV40 genome) causes a dramatic inhibition of viral DNA replication. However, treatment of cells with UV radiation (20 J/m2) before infection with SV40 virus enhances the replication of UV-damaged viral DNA. To investigate the mechanism of this enhancement of replication, we analyzed the kinetics of synthesis and interconversion of viral replicative intermediates synthesized after UV irradiation of SV40-infected cells that had been pretreated with UV radiation. This enhancement did not appear to be due to an expansion of the size of the pool of replicative intermediates after irradiation of pretreated infected cells; the kinetics of incorporation of labeled thymidine into replicative intermediates were very similar after irradiation of infected control and pretreated cells. The major products of replication of SV40 DNA after UV irradiation at the low UV fluences used here were form II molecules with single-stranded gaps (relaxed circular intermediates). There did not appear to be a change in the proportion of these molecules synthesized when cells were pretreated with UV radiation. Thus, it is unlikely that a substantial amount of DNA synthesis occurs past pyrimidine dimers without leaving gaps. This conclusion is supported by the observation that the proportion of newly synthesized SV40 form I molecules that contain pyrimidine dimers was not increased in pretreated cells. Pulse-chase experiments suggested that there is a more efficient conversion of replicative intermediates into form I molecules in pretreated cells. This could be due to more efficient gap filling in relaxed circular intermediate molecules or to the release of blocked replication forks. Alternatively, the enhanced replication observed here may be due to an increase in the excision repair capacity of the pretreated cells.


2019 ◽  
Vol 20 (17) ◽  
pp. 4130 ◽  
Author(s):  
Dario Balestra ◽  
Domenico Giorgio ◽  
Matteo Bizzotto ◽  
Maria Fazzari ◽  
Bruria Ben Zeev ◽  
...  

Mutations in the CDKL5 gene lead to an incurable rare neurological condition characterized by the onset of seizures in the first weeks of life and severe intellectual disability. Replacement gene or protein therapies could represent intriguing options, however, their application may be inhibited by the recent demonstration that CDKL5 is dosage sensitive. Conversely, correction approaches acting on pre-mRNA splicing would preserve CDKL5 physiological regulation. Since ~15% of CDKL5 pathogenic mutations are candidates to affect splicing, we evaluated the capability of variants of the spliceosomal U1 small nuclear RNA (U1snRNA) to correct mutations affecting +1 and +5 nucleotides at the 5′ donor splice site and predicted to cause exon skipping. Our results show that CDKL5 minigene variants expressed in mammalian cells are a valid approach to assess CDKL5 splicing pattern. The expression of engineered U1snRNA effectively rescued mutations at +5 but not at the +1 nucleotides. Importantly, we proved that U1snRNA-mediated splicing correction fully restores CDKL5 protein synthesis, subcellular distribution and kinase activity. Eventually, by correcting aberrant splicing of an exogenously expressed splicing-competent CDKL5 transgene, we provided insights on the morphological rescue of CDKL5 null neurons, reporting the first proof-of-concept of the therapeutic value of U1snRNA-mediated CDKL5 splicing correction.


1976 ◽  
Vol 159 (3) ◽  
pp. 585-600 ◽  
Author(s):  
K S Chapman ◽  
J Ingle

A nuclear preparation, containing 60-80% of the total tissue DNA and less than 0.5% of the total rRNA, was used to characterize the nuclear RNA species synthesized in cultured artichoke explants. The half-lives of the nuclear RNA species were estimated from first-order-decay analyses to be: hnRNA (heterogeneous nuclear RNA) containing poly(A), 38 min; hnRNA lacking poly(A), 37 min; 2.5 × 10(6)-mol. wt. precursor rRNA, 24 min; 1.4 × 10(6)-mol.wt. precursor rRNA, 58 min; 1.0 × 10(6)-mol.wt. precursor rRNA, 52 min. The shorter half-lives are probably overestimates, owing to the time required for equilibration of the nucleotide-precursor pools. The pathway of rRNA synthesis is considered in terms of these kinetic measurements. The rate of accumulation of cytoplasmic polydisperse RNA suggested that as much as 40% of the hnRNA may be transported to the cytoplasm. The 14-25% of the hnRNA that contained a poly(A) tract had an average molecular size of 0.7 × 10(6) daltons. The poly(A) segment was 40-200 nucleotides long, consisted of at least 95% AMP and accounted for 8-10% of the [32P]orthophosphate incorporated into the poly(A)-containing hnRNA. Ribonucleoprotein particles released from nuclei by sonication, lysis in EDTA or incubation in buffer were analysed by sedimentation through sucrose gradients and by isopycnic centrifugation in gradients of metrizamide and CsCl. More than 50% of the hnRNA remained bound to the chromatin after each treatment. The hnRNA was always associated with protein but the densities of isolated particles suggested that the ratio of protein to RNA was lower than that reported for mammalian cells, The particles separated from chromatin were not enriched for poly(A)-containing hnRNA.


1994 ◽  
Vol 14 (3) ◽  
pp. 2180-2190
Author(s):  
D N Frank ◽  
H Roiha ◽  
C Guthrie

We have used comparative sequence analysis and deletion analysis to examine the secondary structure of the U5 small nuclear RNA (snRNA), an essential component of the pre-mRNA splicing apparatus. The secondary structure of Saccharomyces cerevisiae U5 snRNA was studied in detail, while sequences from six other fungal species were included in the phylogenetic analysis. Our results indicate that fungal U5 snRNAs, like their counterparts from other taxa, can be folded into a secondary structure characterized by a highly conserved stem-loop (stem-loop 1) that is flanked by a moderately conserved internal loop (internal loop 1). In addition, several of the fungal U5 snRNAs include a novel stem-loop structure (ca. 30 nucleotides) that is adjacent to stem-loop 1. By deletion analysis of the S. cerevisiae snRNA, we have demonstrated that the minimal U5 snRNA that can complement the lethal phenotype of a U5 gene disruption consists of (i) stem-loop 1, (ii) internal loop 1, (iii) a stem-closing internal loop 1, and (iv) the conserved Sm protein binding site. Remarkably, all essential, U5-specific primary sequence elements are encoded by a 39-nucleotide domain consisting of stem-loop 1 and internal loop 1. This domain must, therefore, contain all U5-specific sequences that are essential for splicing activity, including binding sites for U5-specific proteins.


1993 ◽  
Vol 13 (5) ◽  
pp. 2666-2676
Author(s):  
J B Cohen ◽  
S D Broz ◽  
A D Levinson

Pre-mRNA 5' splice site activity depends, at least in part, on base complementarity to U1 small nuclear RNA. In transient coexpression assays, defective 5' splice sites can regain activity in the presence of U1 carrying compensatory changes, but it is unclear whether such mutant U1 RNAs can be permanently expressed in mammalian cells. We have explored this issue to determine whether U1 small nuclear RNAs with altered specificity may be of value to rescue targeted mutant genes or alter pre-mRNA processing profiles. This effort was initiated following our observation that U1 with specificity for a splice site associated with an alternative H-ras exon substantially reduced the synthesis of the potentially oncogenic p21ras protein in transient assays. We describe the development of a mammalian complementation system that selects for removal of a splicing-defective intron placed within a drug resistance gene. Complementation was observed in proportion to the degree of complementarity between transfected mutant U1 genes and different defective splice sites, and all cells selected in this manner were found to express mutant U1 RNA. In addition, these cells showed specific activation of defective splice sites presented by an unlinked reporter gene. We discuss the prospects of this approach to permanently alter the expression of targeted genes in mammalian cells.


1994 ◽  
Vol 14 (3) ◽  
pp. 2180-2190 ◽  
Author(s):  
D N Frank ◽  
H Roiha ◽  
C Guthrie

We have used comparative sequence analysis and deletion analysis to examine the secondary structure of the U5 small nuclear RNA (snRNA), an essential component of the pre-mRNA splicing apparatus. The secondary structure of Saccharomyces cerevisiae U5 snRNA was studied in detail, while sequences from six other fungal species were included in the phylogenetic analysis. Our results indicate that fungal U5 snRNAs, like their counterparts from other taxa, can be folded into a secondary structure characterized by a highly conserved stem-loop (stem-loop 1) that is flanked by a moderately conserved internal loop (internal loop 1). In addition, several of the fungal U5 snRNAs include a novel stem-loop structure (ca. 30 nucleotides) that is adjacent to stem-loop 1. By deletion analysis of the S. cerevisiae snRNA, we have demonstrated that the minimal U5 snRNA that can complement the lethal phenotype of a U5 gene disruption consists of (i) stem-loop 1, (ii) internal loop 1, (iii) a stem-closing internal loop 1, and (iv) the conserved Sm protein binding site. Remarkably, all essential, U5-specific primary sequence elements are encoded by a 39-nucleotide domain consisting of stem-loop 1 and internal loop 1. This domain must, therefore, contain all U5-specific sequences that are essential for splicing activity, including binding sites for U5-specific proteins.


Science ◽  
2021 ◽  
pp. eabg0879
Author(s):  
Rui Bai ◽  
Ruixue Wan ◽  
Lin Wang ◽  
Kui Xu ◽  
Qiangfeng Zhang ◽  
...  

The minor spliceosome mediates splicing of the rare but essential U12-type pre-mRNA. Here we report the atomic features of the activated human minor spliceosome determined by cryo-electron microscopy at 2.9-Å resolution. The 5′-splice site and branch point sequence of the U12-type intron are recognized by U6atac and U12 small nuclear RNA (snRNA), respectively. Five newly identified proteins stabilize the conformation of the catalytic center. The zinc finger protein SCNM1 functionally mimics the SF3a complex of the major spliceosome. The RBM48/ARMC7 complex binds the γ-monomethyl phosphate cap at the 5′-end of U6atac snRNA. The U-box protein PPIL2 coordinates loop I of U5 snRNA and stabilizes U5 snRNP. CRIPT stabilizes U12 snRNP. Our study provides a framework for mechanistic understanding of the function of the minor spliceosome.


Sign in / Sign up

Export Citation Format

Share Document