scholarly journals Structure of the SAD mutation and the location of control sites at silent mating type genes in Saccharomyces cerevisiae.

1984 ◽  
Vol 4 (7) ◽  
pp. 1278-1285 ◽  
Author(s):  
J Hicks ◽  
J Strathern ◽  
A Klar ◽  
S Ismail ◽  
J Broach

The SAD mutation, an extra mating type cassette, has been shown to arise from an unequal mitotic crossover between the MAT and HMR loci, resulting in the formation of a hybrid cassette and a duplication of the MAT-HMR interval. The SAD cassette contains the "a" information and left-hand flanking regions from the parental HMRa cassette and the right-hand flanking sequences of the parental MAT cassette. This arrangement of flanking sequences causes a leaky but reproducible mating phenotype correlated with a low-level expression of the cassette as measured by RNA blotting. This weak expression is attributed to the loss of one flanking control site normally present at the silent HM storage loci.

1984 ◽  
Vol 4 (7) ◽  
pp. 1278-1285
Author(s):  
J Hicks ◽  
J Strathern ◽  
A Klar ◽  
S Ismail ◽  
J Broach

The SAD mutation, an extra mating type cassette, has been shown to arise from an unequal mitotic crossover between the MAT and HMR loci, resulting in the formation of a hybrid cassette and a duplication of the MAT-HMR interval. The SAD cassette contains the "a" information and left-hand flanking regions from the parental HMRa cassette and the right-hand flanking sequences of the parental MAT cassette. This arrangement of flanking sequences causes a leaky but reproducible mating phenotype correlated with a low-level expression of the cassette as measured by RNA blotting. This weak expression is attributed to the loss of one flanking control site normally present at the silent HM storage loci.


1986 ◽  
Vol 6 (2) ◽  
pp. 688-702 ◽  
Author(s):  
J M Ivy ◽  
A J Klar ◽  
J B Hicks

Mating type in the yeast Saccharomyces cerevisiae is determined by the MAT (a or alpha) locus. HML and HMR, which usually contain copies of alpha and a mating type information, respectively, serve as donors in mating type interconversion and are under negative transcriptional control. Four trans-acting SIR (silent information regulator) loci are required for repression of transcription. A defect in any SIR gene results in expression of both HML and HMR. The four SIR genes were isolated from a genomic library by complementation of sir mutations in vivo. DNA blot analysis suggests that the four SIR genes share no sequence homology. RNA blots indicate that SIR2, SIR3, and SIR4 each encode one transcript and that SIR1 encodes two transcripts. Null mutations, made by replacement of the normal genomic allele with deletion-insertion mutations created in the cloned SIR genes, have a Sir- phenotype and are viable. Using the cloned genes, we showed that SIR3 at a high copy number is able to suppress mutations of SIR4. RNA blot analysis suggests that this suppression is not due to transcriptional regulation of SIR3 by SIR4; nor does any SIR4 gene transcriptionally regulate another SIR gene. Interestingly, a truncated SIR4 gene disrupts regulation of the silent mating type loci. We propose that interaction of at least the SIR3 and SIR4 gene products is involved in regulation of the silent mating type genes.


1990 ◽  
Vol 10 (1) ◽  
pp. 409-412 ◽  
Author(s):  
G P Livi ◽  
J B Hicks ◽  
A J Klar

The silent mating-type genes (HML and HMR) of Saccharomyces cerevisiae are kept under negative transcriptional control by the trans-acting products of the four MAR/SIR loci. MAR/SIR gene mutations result in the simultaneous derepression of HML and HMR gene expression. The sum1-1 mutation was previously identified as an extragenic suppressor of mutations in MAR1 (SIR2) and MAR2 (SIR3). As assayed genetically, sum1-1 is capable of restoring repression of silent mating-type information in cells containing mar1 or mar2 null mutations. We show here that the mating-type phenotype associated with sum1-1 results from a dramatic reduction in the steady-state level of HML and HMR gene transcripts. At the same time, the sum1-1 mutation has no significant effect on the level of each of the four MAR/SIR mRNAs.


1989 ◽  
Vol 9 (11) ◽  
pp. 4621-4630
Author(s):  
D J Mahoney ◽  
J R Broach

Mating-type genes resident in the silent cassette HML at the left arm of chromosome III are repressed by the action of four SIR gene products, most likely mediated through two cis-acting sites located on opposite sides of the locus. We showed that deletion of either of these two cis-acting sites from the chromosome did not yield any detectable derepression of HML, while deletion of both sites yielded full expression of the locus. In addition, each of these sites was capable of exerting repression of heterologous genes inserted in their vicinity. Thus, HML expression is regulated by two independent silencers, each fully competent for maintaining repression. This situation was distinct from the organization of the other silent locus, HMR, at which a single silencer served as the predominant repressor of expression. Examination of identifiable domains and binding sites within the HML silencers suggested that silencing activity can be achieved by a variety of combinations of various functional domains.


1987 ◽  
Vol 7 (12) ◽  
pp. 4441-4452
Author(s):  
M Marshall ◽  
D Mahoney ◽  
A Rose ◽  
J B Hicks ◽  
J R Broach

The product of the Saccharomyces cerevisiae SIR4 gene, in conjunction with at least three other gene products, prevents expression of mating-type genes resident at loci at either end of chromosome III, but not of the same genes resident at the MAT locus in the middle of the chromosome. To address the mechanism of this novel position effect regulation, we have conducted a structural and genetic analysis of the SIR4 gene. We have determined the nucleotide sequence of the gene and found that it encodes a lysine-rich, serine-rich protein of 152 kilodaltons. Expression of the carboxy half of the protein complements a chromosomal nonsense mutation of sir4 but not a complete deletion of the gene. These results suggest that SIR4 protein activity resides in two portions of the molecule, but that these domains need not be covalently linked to execute their biological function. We also found that high-level expression of the carboxy domain of the protein yields dominant derepression of the silent loci. This anti-Sir activity can be reversed by increased expression of the SIR3 gene, whose product is normally also required for maintaining repression of the silent loci. These results are consistent with the hypothesis that SIR3 and SIR4 proteins physically associate to form a multicomponent complex required for repression of the silent mating-type loci.


1985 ◽  
Vol 5 (8) ◽  
pp. 2154-2158
Author(s):  
B Weiffenbach ◽  
J E Haber

Homothallic switching of the mating type genes of Saccharomyces cerevisiae occurs by a gene conversion event, replacing sequences at the expressed MAT locus with a DNA segment copied from one of two unexpressed loci, HML or HMR. The transposed Ya or Y alpha sequences are flanked by homologous regions that are believed to be essential for switching. We examined the transposition of a mating type gene (hmr alpha 1-delta 6) which contains a 150-base-pair deletion spanning the site where the HO endonuclease generates a double-stranded break in MAT that initiates the gene conversion event. Despite the fact that the ends of the cut MAT region no longer share homology with the donor hmr alpha 1-delta 6, switching of MATa or MAT alpha to mat alpha 1-delta 6 was efficient. However, there was a marked increase in the number of aberrant events, especially the formation of haploid-inviable fusions between MAT and the hmr alpha 1-delta 6 donor locus.


2000 ◽  
Vol 13 (12) ◽  
pp. 1330-1339 ◽  
Author(s):  
Tsutomu Arie ◽  
Isao Kaneko ◽  
Takanobu Yoshida ◽  
Masami Noguchi ◽  
Yoshikuni Nomura ◽  
...  

Mating-type (MAT) loci were cloned from two asexual (mitosporic) phytopathogenic ascomycetes, Fusarium oxysporum (a pyrenomycete) and Alternaria alternata (a loculoascomycete), by a polymerase chain reaction (PCR)-based strategy. The conserved high mobility group (HMG) box domain found in the MAT1-2-1 protein was used as a starting point for cloning and sequencing the entire MAT1-2 idiomorph plus flanking regions. Primer pairs designed to both flanking regions were used to amplify the opposite MAT1-1 idiomorph. The MAT1-1 and MAT1-2 idiomorphs were approximately 4.6 and 3.8 kb in F. oxysporum and approximately 1.9 and 2.2 kb in A. alternata, respectively. In both species, the MAT1-1 idiomorph contains at least one gene that encodes a protein with a putative alpha box domain and the MAT1-2 idiomorph contains one gene that encodes a protein with a putative HMG box domain. MAT-specific primers were used to assess the mating type of F. oxysporum and A. alternata field isolates by PCR. MAT genes from A. alternata were expressed. The A. alternata genes were confirmed to be functional in a close sexual relative, Cochliobolus heterostrophus, by heterologous expression.


1982 ◽  
Vol 2 (1) ◽  
pp. 11-20 ◽  
Author(s):  
R K Chan ◽  
C A Otte

Eight independently isolated mutants which are supersensitive (Sst-) to the G1 arrest induced by the tridecapeptide pheromone alpha factor were identified by screening mutagenized Saccharomyces cerevisiae MATa cells on solid medium for increased growth inhibition by alpha factor. These mutants carried lesions in two complementation groups, sst1 and sst2. Mutations at the sst1 locus were mating type specific: MATa sst1 cells were supersensitive to alpha factor, but MAT alpha sst1 cells were not supersensitive to a factor. In contrast, mutations at the sst2 locus conferred supersensitivity to the pheromones of the opposite mating type on both MATa and MAT alpha cells. Even in the absence of added alpha pheromone, about 10% of the cells in exponentially growing cultures of MATa strains carrying any of three different alleles of sst2 (including the ochre mutation sst2-4) had the aberrant morphology ("shmoo" shape) that normally develops only after MATa cells are exposed to alpha factor. This "self-shmooing" phenotype was genetically linked to the sst2 mutations, although the leakiest allele isolated (sst2-3) did not display this characteristic. Normal MATa/MAT alpha diploids do not respond to pheromones; diploids homozygous for an sst2 mutation (MATa/MAT alpha sst2-1/sst2-1) were still insensitive to alpha factor. The sst1 gene was mapped to within 6.9 centimorgans of his6 on chromosome IX. The sst2 gene was unlinked to sst1, was not centromere linked, and was shown to be neither linked to nor centromere distal to MAT on the right arm of chromosome III.


1985 ◽  
Vol 5 (8) ◽  
pp. 2154-2158 ◽  
Author(s):  
B Weiffenbach ◽  
J E Haber

Homothallic switching of the mating type genes of Saccharomyces cerevisiae occurs by a gene conversion event, replacing sequences at the expressed MAT locus with a DNA segment copied from one of two unexpressed loci, HML or HMR. The transposed Ya or Y alpha sequences are flanked by homologous regions that are believed to be essential for switching. We examined the transposition of a mating type gene (hmr alpha 1-delta 6) which contains a 150-base-pair deletion spanning the site where the HO endonuclease generates a double-stranded break in MAT that initiates the gene conversion event. Despite the fact that the ends of the cut MAT region no longer share homology with the donor hmr alpha 1-delta 6, switching of MATa or MAT alpha to mat alpha 1-delta 6 was efficient. However, there was a marked increase in the number of aberrant events, especially the formation of haploid-inviable fusions between MAT and the hmr alpha 1-delta 6 donor locus.


Sign in / Sign up

Export Citation Format

Share Document