Multiple transcripts from the Antennapedia gene of Drosophila melanogaster

1986 ◽  
Vol 6 (12) ◽  
pp. 4667-4675
Author(s):  
V L Stroeher ◽  
E M Jorgensen ◽  
R L Garber

The structures of four major transcripts from the homeotic gene Antennapedia of Drosophila melanogaster were determined. These transcripts constitute two RNA classes, each class initiating from a unique promoter but sharing 3' exons. Within the shared sequences is a major open reading frame encoding a 378-amino-acid protein as well as alternative polyadenylation sites. Although the RNA classes differ in their 5' sequences, both leaders contain many AUGs upstream of the major open reading frame. For the two RNA classes, neither gross tissue nor temporal specificity was observed. However, the second poly(A) site is preferred in neural tissue. The structural diversity of the RNAs is discussed in relation to biological functions of the Antennapedia locus.

1986 ◽  
Vol 6 (12) ◽  
pp. 4667-4675 ◽  
Author(s):  
V L Stroeher ◽  
E M Jorgensen ◽  
R L Garber

The structures of four major transcripts from the homeotic gene Antennapedia of Drosophila melanogaster were determined. These transcripts constitute two RNA classes, each class initiating from a unique promoter but sharing 3' exons. Within the shared sequences is a major open reading frame encoding a 378-amino-acid protein as well as alternative polyadenylation sites. Although the RNA classes differ in their 5' sequences, both leaders contain many AUGs upstream of the major open reading frame. For the two RNA classes, neither gross tissue nor temporal specificity was observed. However, the second poly(A) site is preferred in neural tissue. The structural diversity of the RNAs is discussed in relation to biological functions of the Antennapedia locus.


2007 ◽  
Vol 81 (21) ◽  
pp. 12080-12085 ◽  
Author(s):  
Jianming Qiu ◽  
Fang Cheng ◽  
F. Brent Johnson ◽  
David Pintel

ABSTRACT The Bocavirus bovine parvovirus generated a single pre-mRNA from a promoter at its left-hand end; however, the pattern of its alternative polyadenylation and splicing was different from that of other parvoviruses. A large left-hand-end open reading frame (ORF) encoded a nonstructural protein of approximately 95 kDa. An abundant, spliced, internally polyadenylated transcript encoded the viral NP1 protein from an ORF in the center of the genome. Transcripts encoding the capsid proteins were polyadenylated in the right-hand terminal palindrome. This is the first published transcription map of a member of the Bocavirus genus of the Parvovirinae.


Genetics ◽  
1995 ◽  
Vol 141 (4) ◽  
pp. 1425-1438 ◽  
Author(s):  
P J Merriman ◽  
C D Grimes ◽  
J Ambroziak ◽  
D A Hackett ◽  
P Skinner ◽  
...  

Abstract The S elements form a diverse family of long-inverted-repeat transposons within the genome of Drosophila melanogaster. These elements vary in size and sequence, the longest consisting of 1736 bp with 234-bp inverted terminal repeats. The longest open reading frame in an intact S element could encode a 345-amino acid polypeptide. This polypeptide is homologous to the transposases of the mariner-Tc1 superfamily of transposable elements. S elements are ubiquitous in D. melanogaster populations and also appear to be present in the genomes of two sibling species; however, they seem to be absent from 17 other Drosophila species that were examined. Within D. melanogaster strains, there are, on average, 37.4 cytologically detectable S elements per diploid genome. These elements are scattered throughout the chromosomes, but several sites in both the euchromatin and beta heterochromatin are consistently occupied. The discovery of an S-element-insertion mutation and a reversion of this mutation indicates that S elements are at least occasionally mobile in the D. melanogaster genome. These elements seem to insert at an AT dinucleotide within a short palindrome and apparently duplicate that dinucleotide upon insertion.


1986 ◽  
Vol 6 (12) ◽  
pp. 4676-4689 ◽  
Author(s):  
A Laughon ◽  
A M Boulet ◽  
J R Bermingham ◽  
R A Laymon ◽  
M P Scott

The Antennapedia (Antp) homeotic gene of Drosophila melanogaster regulates segmental identity in the thorax. Loss of Antp function results in altered development of the embryonic thoracic segments or can cause legs to be transformed into antennae. Certain combinations of Antp recessive lethal alleles complement to permit normal development. The structure of the Antp gene, analyzed by sequencing cDNA clones and exons and by transcript mapping, revealed some of the basis for its genetic complexity. It has two promoters governing two nested transcription units, one unit 36 and one 103 kilobase pairs (kb) long. Both units incorporated the same protein-coding exons, all of which are located in the 3'-most 13 kb of the gene. The two promoters resulted in the attachment of either of two long noncoding leader sequences (1.5 and 1.7 kb) to a 1.1-kb open reading frame. Both transcription units used the same pair of alternative polyadenylation sites 1.4 kb apart; the choice of sites was developmentally regulated. Some of the mutations that disrupt the larger transcription unit complemented a mutation affecting the smaller one. Dominant mutations that transform antennae into legs split the gene but left the coding exons intact. The encoded protein has unusually long runs of glutamine and a homeodomain near the C terminus.


1998 ◽  
Vol 72 (3) ◽  
pp. 2265-2271 ◽  
Author(s):  
Xiao Tao Lu ◽  
Amy C. Sims ◽  
Mark R. Denison

ABSTRACT The 3C-like proteinase (3CLpro) of mouse hepatitis virus (MHV) is predicted to cleave at least 11 sites in the 803-kDa gene 1 polyprotein, resulting in maturation of proteinase, polymerase, and helicase proteins. However, most of these cleavage sites have not been experimentally confirmed and the proteins have not been identified in vitro or in virus-infected cells. We used specific antibodies to identify and characterize a 22-kDa protein (p1a-22) expressed from gene 1 in MHV A59-infected DBT cells. Processing of p1a-22 from the polyprotein began immediately after translation, but some processing continued for several hours. Amino-terminal sequencing of p1a-22 purified from MHV-infected cells showed that it was cleaved at a putative 3CLpro cleavage site, Gln_Ser4014 (where the underscore indicates the site of cleavage), that is located between the 3CLpro domain and the end of open reading frame (ORF) 1a. Subclones of this region of gene 1 were used to express polypeptides in vitro that contained one or more 3CLpro cleavage sites, and cleavage of these substrates by recombinant 3CLpro in vitro confirmed that amino-terminal cleavage of p1a-22 occurred at Gln_Ser4014. We demonstrated that the carboxy-terminal cleavage of the p1a-22 protein occurred at Gln_Asn4208, a sequence that had not been predicted as a site for cleavage by MHV 3CLpro. Our results demonstrate the usefulness of recombinant MHV 3CLpro in identifying and confirming cleavage sites within the gene 1 polyprotein. Based on our results, we predict that at least seven mature proteins are processed from the ORF 1a polyprotein by 3CLpro and suggest that additional noncanonical cleavage sites may be used by 3CLpro during processing of the gene 1 polyprotein.


Genetics ◽  
1987 ◽  
Vol 116 (1) ◽  
pp. 67-73
Author(s):  
Tim P Keith ◽  
Margaret A Riley ◽  
Martin Kreitman ◽  
R C Lewontin ◽  
Daniel Curtis ◽  
...  

ABSTRACT We determined the nucleotide sequence of a 4.6-kb Eco RI fragment containing 70% of the rosy locus. In combination with information on the 5′ sequence, the gene has been sequenced in entirety. rosy cDNAs have been isolated and intron/exon boundaries have been determined. We find an open reading frame which spans four exons and would encode a protein of 1335 amino acids. The molecular weight of the encoded protein (xanthine dehydrogenase), based on the amino acid translation, is 146,898 daltons which agrees well with earlier biophysical estimates. Characteristics of the protein are discussed.


1998 ◽  
Vol 72 (10) ◽  
pp. 8425-8429 ◽  
Author(s):  
Giovanna Bergamini ◽  
Marko Reschke ◽  
Maria Concetta Battista ◽  
Maria Cristina Boccuni ◽  
Fabio Campanini ◽  
...  

ABSTRACT β2.7 is the major early transcript produced during human cytomegalovirus infection. This abundantly expressed RNA is polysome associated, but no protein product has ever been detected. In this study, a stable peptide of 24 kDa was produced in vitro from the major open reading frame (ORF), TRL4. Following transient transfection, the intracellular localization was nucleolar and the expression was posttranscriptionally inhibited by the 5′ sequence of the transcript, which harbors two short upstream ORFs.


Genome ◽  
1991 ◽  
Vol 34 (1) ◽  
pp. 6-12 ◽  
Author(s):  
Shiv S. Prasad ◽  
Linda J. Harris ◽  
David L. Baillie ◽  
Ann M. Rose

In this paper we present the sequence of an intact Caenorhabditis briggsae transposable element, Tcb2. Tcb2 is 1606 base pairs in length and contains 80 base pair imperfect terminal repeats and a single open reading frame. We have identified blocks of T-rich repeats in the regions 150–200 and 1421–1476 of this element which are conserved in the Caenorhabditis elegans element Tc1. The sequence conservation of these regions in elements from different Caenorhabditis species suggests that they are of functional importance. A single open reading frame corresponding to the major open reading frame of Tc1 is conserved among Tc1, Tcb1, and Tcb2. Comparison of the first 550 nucleotides of the sequence among the three elements has allowed the evaluation of a model proposing an extension of the major open reading frame. Our data support the suggestion that Tc1 is capable of producing a 335 amino acid protein. A comparison of the sequence coding for the amino and carboxy termini of the 273 amino acid transposase from Caenorhabditis Tc1-like elements and Drosophila HB1 showed different amounts of divergence for each of these regions, indicating that the two functional domains have undergone different amounts of selection. Our data are not compatible with the proposal that Tc1-related sequences have been acquired via horizontal transmission. The divergence of Tc1 from the two C. briggsae elements, Tcb1 and Tcb2, indicated that all three elements have been diverging from each other for approximately the same amount of time as the genomes of the two species.Key words: Caenorhabditis, transposable element, sequence comparison.


1996 ◽  
Vol 16 (10) ◽  
pp. 5717-5725 ◽  
Author(s):  
S Henchoz ◽  
F De Rubertis ◽  
D Pauli ◽  
P Spierer

A dominant insertional P-element mutation enhances position-effect variegation in Drosophila melanogaster. The mutation is homozygous, viable, and fertile and maps at 64E on the third chromosome. The corresponding gene was cloned by transposon tagging. Insertion of the transposon upstream of the open reading frame correlates with a strong reduction of transcript level. A transgene was constructed with the cDNA and found to have the effect opposite from that of the mutation, namely, to suppress variegation. Sequencing of the cDNA reveals a large open reading frame encoding a putative ubiquitin-specific protease (Ubp). Ubiquitin marks various proteins, frequently for proteasome-dependent degradation. Ubps can cleave the ubiquitin part from these proteins. We discuss the link established here between a deubiquitinating enzyme and epigenetic silencing processes.


Sign in / Sign up

Export Citation Format

Share Document