upstream open reading frame
Recently Published Documents


TOTAL DOCUMENTS

172
(FIVE YEARS 42)

H-INDEX

41
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Paul J. Russell ◽  
Jacob A. Slivka ◽  
Elaina P. Boyle ◽  
Arthur H.M. Burghes ◽  
Michael G. Kearse

It is estimated that nearly 50% of mammalian transcripts contain at least one upstream open reading frame (uORF), which are typically one to two orders of magnitude smaller than the downstream main ORF. Most uORFs are thought to be inhibitory as they sequester the scanning ribosome, but in some cases allow for translation re-initiation. However, termination in the 5ʹ UTR at the end of uORFs resembles pre-mature termination that is normally sensed by the nonsense-mediated mRNA decay (NMD) pathway. Translation re-initiation has been proposed as a method for mRNAs to prevent NMD. Here we test how uORF length influences translation re-initiation and mRNA stability. Using custom 5ʹ UTRs and uORF sequences, we show that re-initiation can occur on heterologous mRNA sequences, favors small uORFs, and is supported when initiation occurs with more initiation factors. After determining reporter mRNA half-lives and mining available mRNA half-life datasets for cumulative uORF length, we conclude that translation re-initiation after uORFs is not a robust method for mRNAs to evade NMD. Together, these data support a model where uORFs have evolved to balance coding capacity, translational control, and mRNA stability.


2021 ◽  
Author(s):  
Ashley Kidwell ◽  
Shiv Pratap Singh Yadav ◽  
Bernhard Maier ◽  
Amy Zollman ◽  
Kevin Ni ◽  
...  

The eIF2 initiation complex is central to maintaining a functional translation machinery. Extreme stress such as life-threatening sepsis exposes vulnerabilities in this tightly regulated system, resulting in an imbalance between the opposing actions of kinases and phosphatases on the main regulatory subunit eIF2α. Here, we report that translation shutdown is a hallmark of established sepsis-induced kidney injury brought about by excessive eIF2α phosphorylation and sustained by blunted expression of the counterregulatory phosphatase subunit Ppp1r15a. We determined that the blunted Ppp1r15a expression persists because of the presence of an upstream open reading frame (uORF). Overcoming this barrier with genetic approaches enabled the derepression of Ppp1r15a, salvaged translation and improved kidney function in an endotoxemia model. We also found that the loss of this uORF has broad effects on the composition and phosphorylation status of the immunopeptidome that extended beyond the eIF2α axis. Collectively, our findings define the breath and potency of the highly conserved Ppp1r15a uORF and provide a paradigm for the design of uORF-based translation rheostat strategies. The ability to accurately control the dynamics of translation during sepsis will open new paths for the development of therapies at codon level precision.


2021 ◽  
Author(s):  
Qing-Rong Liu ◽  
Min Zhu ◽  
Pingbo Zhang ◽  
Caio H. Mazucanti ◽  
Nicholas S. Huang ◽  
...  

<a>Human insulin (<i>INS</i>) gene diverged from the ancestral genes of invertebrate and mammalian species millions of years ago. We previously found that mouse insulin gene (<i>Ins2</i>) isoforms are expressed in brain choroid plexus (ChP) epithelium cells where insulin secretion is regulated by serotonin and not by glucose. We further compared human <i>INS</i> isoform expression in postmortem <u>ChP</u> and islets of Langerhans. We uncovered novel <i>INS</i> upstream open reading frame (uORF) isoforms and their protein products. In addition, we found a novel alternatively spliced isoform that translates to a 74-amino acid (AA) proinsulin containing a shorter 19-AA C-peptide sequence, herein designated C</a>a-peptide. The middle portion of the conventional C-peptide contains b-sheet (GQVEL) and hairpin (GGGPG) motifs that are not present in Ca-peptide. Islet amyloid polypeptide (<i>IAPP</i>) is not expressed in ChP and its amyloid formation was inhibited <i>in vitro</i> by Ca-peptide more efficiently than by C-peptide. Of clinical relevance, the ratio of the 74-AA proinsulin to proconvertase processed Ca-peptide was significantly increased in islets from type 2 diabetes mellitus (T2DM) autopsy donors. Intriguingly, 100 years after the discovery of insulin we found that <i>INS</i> isoforms are present in ChP <a>from insulin-deficient autopsy donors.</a> <p> </p>


2021 ◽  
Author(s):  
Qing-Rong Liu ◽  
Min Zhu ◽  
Pingbo Zhang ◽  
Caio H. Mazucanti ◽  
Nicholas S. Huang ◽  
...  

<a>Human insulin (<i>INS</i>) gene diverged from the ancestral genes of invertebrate and mammalian species millions of years ago. We previously found that mouse insulin gene (<i>Ins2</i>) isoforms are expressed in brain choroid plexus (ChP) epithelium cells where insulin secretion is regulated by serotonin and not by glucose. We further compared human <i>INS</i> isoform expression in postmortem <u>ChP</u> and islets of Langerhans. We uncovered novel <i>INS</i> upstream open reading frame (uORF) isoforms and their protein products. In addition, we found a novel alternatively spliced isoform that translates to a 74-amino acid (AA) proinsulin containing a shorter 19-AA C-peptide sequence, herein designated C</a>a-peptide. The middle portion of the conventional C-peptide contains b-sheet (GQVEL) and hairpin (GGGPG) motifs that are not present in Ca-peptide. Islet amyloid polypeptide (<i>IAPP</i>) is not expressed in ChP and its amyloid formation was inhibited <i>in vitro</i> by Ca-peptide more efficiently than by C-peptide. Of clinical relevance, the ratio of the 74-AA proinsulin to proconvertase processed Ca-peptide was significantly increased in islets from type 2 diabetes mellitus (T2DM) autopsy donors. Intriguingly, 100 years after the discovery of insulin we found that <i>INS</i> isoforms are present in ChP <a>from insulin-deficient autopsy donors.</a> <p> </p>


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Brian Brown ◽  
Sahana Mitra ◽  
Finnegan D Roach ◽  
Deepika Vasudevan ◽  
Hyung Don Ryoo

PERK is an endoplasmic reticulum (ER) transmembrane sensor that phosphorylates eIF2α to initiate the Unfolded Protein Response (UPR). eIF2α phosphorylation promotes stress-responsive gene expression most notably through the transcription factor ATF4 that contains a regulatory 5’ leader. Possible PERK effectors other than ATF4 remain poorly understood. Here, we report that the bZIP transcription factor Xrp1 is required for ATF4-independent PERK signaling. Cell-type-specific gene expression profiling in Drosophila indicated that delta-family glutathione-S-transferases (gstD) are prominently induced by the UPR-activating transgene Rh1G69D. Perk was necessary and sufficient for such gstD induction, but ATF4 was not required. Instead, Perk and other regulators of eIF2α phosphorylation regulated Xrp1 protein levels to induce gstDs. The Xrp1 5’ leader has a conserved upstream Open Reading Frame (uORF) analogous to those that regulate ATF4 translation. The gstD-GFP reporter induction required putative Xrp1 binding sites. These results indicate that antioxidant genes are highly induced by a previously unrecognized UPR signaling axis consisting of PERK and Xrp1.


2021 ◽  
Vol 22 (19) ◽  
pp. 10683
Author(s):  
Zhiyong Li ◽  
Yajuan Fu ◽  
Jinyu Shen ◽  
Jiansheng Liang

With no lysine (K) (WNK) kinases comprise a family of serine/threonine kinases belonging to an evolutionary branch of the eukaryotic kinome. These special kinases contain a unique active site and are found in a wide range of eukaryotes. The model plant Arabidopsis has been reported to have 11 WNK members, of which WNK8 functions as a negative regulator of abscisic acid (ABA) signaling. Here, we found that the expression of WNK8 is post-transcriptionally regulated through an upstream open reading frame (uORF) found in its 5′ untranslated region (5′-UTR). This uORF has been predicted to encode a conserved peptide named CPuORF58 in both monocotyledons and dicotyledons. The analysis of the published ribosome footprinting studies and the study of the frameshift CPuORF58 peptide with altered repression capability suggested that this uORF causes ribosome stalling. Plants transformed with the native WNK8 promoter driving WNK8 expression were comparable with wild-type plants, whereas the plants transformed with a similar construct with mutated CPuORF58 start codon were less sensitive to ABA. In addition, WNK8 and its downstream target RACK1 were found to synergistically coordinate ABA signaling rather than antagonistically modulating glucose response and flowering in plants. Collectively, these results suggest that the WNK8 expression must be tightly regulated to fulfill the demands of ABA response in plants.


2021 ◽  
Author(s):  
Brian Brown ◽  
Sahana Mitra ◽  
Finnegan D Roach ◽  
Deepika Vasudevan ◽  
Hyung Don Ryoo

PERK is an endoplasmic reticulum (ER) transmembrane sensor that phosphorylates eIF2a to initiate the Unfolded Protein Response (UPR). eIF2a phosphorylation promotes stress-responsive gene expression most notably through the transcription factor ATF4 that contains a regulatory 5′ leader. Possible PERK effectors other than ATF4 remain poorly understood. Here, we report that the bZIP transcription factor Xrp1 is required for ATF4-independent PERK signaling. Cell type-specific gene expression profiling in Drosophila indicated that delta-family glutathione-S-transferases (gstD) are prominently induced by the UPR-activating transgene Rh1G69D. Perk was necessary and sufficient for such gstD induction, but ATF4 was not required. Instead, Perk and other regulators of eIF2a phosphorylation regulated Xrp1 protein levels to induce gstDs. The Xrp1 5′ leader has a conserved upstream Open Reading Frame (uORF) analogous to those that regulate ATF4 translation. The gstD-GFP reporter induction required putative Xrp1 binding sites. These results indicate that antioxidant genes are highly induced by a previously unrecognized UPR signaling axis consisting of PERK and Xrp1.


2021 ◽  
Author(s):  
Kaining Chen ◽  
Congying Chen ◽  
Huihui Li ◽  
Jiaqi Yang ◽  
Mengqing Xiang ◽  
...  

Abstract Retinal development is tightly regulated to ensure the generation of appropriate cell types and the assembly of functional neuronal circuitry. Despite remarkable advances have been made in understanding regulation of gene expression during retinal development, how translational regulation guides retinogenesis is less understood. Here, we conduct a comprehensive translatome and transcriptome survey to the mouse retinogenesis from the embryonic to the adult stages. We discover thousands of genes that have dynamic changes at the translational level and pervasive translational regulation in a developmental stage-specific manner with specific biological functions. We further identify genes whose translational efficiencies are frequently controlled by changing usage in upstream open reading frame during retinal development. These genes are enriched for biological functions highly important to neurons, such as neuron projection organization and microtubule-based protein transport. Surprisingly, we discover hundreds of previously uncharacterized micropeptides, translated from putative long non-coding RNAs and circular RNAs. We validate their protein products in vitro and in vivo and demonstrate their potentials in regulating retinal development. Together, our study presents a rich and complex landscape of translational regulation and provides novel insights into their roles during retinogenesis.


2021 ◽  
Vol 17 (8) ◽  
pp. e1009816
Author(s):  
Esther Rajendran ◽  
Morgan Clark ◽  
Cibelly Goulart ◽  
Birte Steinhöfel ◽  
Erick T. Tjhin ◽  
...  

Intracellular parasites, such as the apicomplexan Toxoplasma gondii, are adept at scavenging nutrients from their host. However, there is little understanding of how parasites sense and respond to the changing nutrient environments they encounter during an infection. TgApiAT1, a member of the apicomplexan ApiAT family of amino acid transporters, is the major uptake route for the essential amino acid L-arginine (Arg) in T. gondii. Here, we show that the abundance of TgApiAT1, and hence the rate of uptake of Arg, is regulated by the availability of Arg in the parasite’s external environment, increasing in response to decreased [Arg]. Using a luciferase-based ‘biosensor’ strain of T. gondii, we demonstrate that the expression of TgApiAT1 varies between different organs within the host, indicating that parasites are able to modulate TgApiAT1-dependent uptake of Arg as they encounter different nutrient environments in vivo. Finally, we show that Arg-dependent regulation of TgApiAT1 expression is post-transcriptional, mediated by an upstream open reading frame (uORF) in the TgApiAT1 transcript, and we provide evidence that the peptide encoded by this uORF is critical for mediating regulation. Together, our data reveal the mechanism by which an apicomplexan parasite responds to changes in the availability of a key nutrient.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Fatima Alghoul ◽  
Schaeffer Laure ◽  
Gilbert Eriani ◽  
Franck Martin

During embryogenesis, Hox mRNA translation is tightly regulated by a sophisticated molecular mechanism that combines two RNA regulons located in their 5’UTR. First, an internal ribosome entry site (IRES) enables cap-independent translation. The second regulon is a translation inhibitory element or TIE, which ensures concomitant cap-dependent translation inhibition. In this study, we deciphered the molecular mechanisms of mouse Hoxa3 and Hoxa11 TIEs. Both TIEs possess an upstream open reading frame (uORF) that is critical to inhibit cap-dependent translation. However, the molecular mechanisms used are different. In Hoxa3 TIE, we identify an uORF which inhibits cap-dependent translation and we show the requirement of the non-canonical initiation factor eIF2D for this process. The mode of action of Hoxa11 TIE is different, it also contains an uORF but it is a minimal uORF formed by an uAUG followed immediately by a stop codon, namely a ‘start-stop’. The ‘start-stop’ sequence is species-specific and in mice, is located upstream of a highly stable stem loop structure which stalls the 80S ribosome and thereby inhibits cap-dependent translation of Hoxa11 main ORF.


Sign in / Sign up

Export Citation Format

Share Document