Multiple interactions between the splicing substrate and small nuclear ribonucleoproteins in spliceosomes

1987 ◽  
Vol 7 (1) ◽  
pp. 281-293
Author(s):  
B Chabot ◽  
J A Steitz

Protection experiments with antibodies against small nuclear ribonucleoproteins (snRNPs) have elucidated the location of and requirements for interactions between snRNPs and human beta-globin transcripts during splicing in vitro. U2 snRNP association with the intron branch site continues after branch formation, requires intact U2 RNA, and is affected by some alterations of the 3' splice site sequence. U2 snRNP binding to the branched intermediate and U1 snRNP protection of an extended 5' splice region are detected exclusively in spliceosome fractions, indicating that both snRNPs are spliceosome components. While each snRNP associates specifically with the pre-mRNA, they also appear to interact with each other. The recovery of fragments mapping upstream of the 5' splice site suggests how the excised exon is held in the spliceosome.

1987 ◽  
Vol 7 (1) ◽  
pp. 281-293 ◽  
Author(s):  
B Chabot ◽  
J A Steitz

Protection experiments with antibodies against small nuclear ribonucleoproteins (snRNPs) have elucidated the location of and requirements for interactions between snRNPs and human beta-globin transcripts during splicing in vitro. U2 snRNP association with the intron branch site continues after branch formation, requires intact U2 RNA, and is affected by some alterations of the 3' splice site sequence. U2 snRNP binding to the branched intermediate and U1 snRNP protection of an extended 5' splice region are detected exclusively in spliceosome fractions, indicating that both snRNPs are spliceosome components. While each snRNP associates specifically with the pre-mRNA, they also appear to interact with each other. The recovery of fragments mapping upstream of the 5' splice site suggests how the excised exon is held in the spliceosome.


1991 ◽  
Vol 11 (3) ◽  
pp. 1258-1269
Author(s):  
M Himmelspach ◽  
R Gattoni ◽  
C Gerst ◽  
K Chebli ◽  
J Stévenin

We have studied the consequences of decreasing the donor site-branch site distance on splicing factor-splice site interactions by analyzing alternative splicing of adenovirus E1A pre-mRNAs in vitro. We show that the proximal 13S donor site has a cis-inhibiting effect on the 9S and 12S mRNA reactions when it is brought too close to the common branch site, suggesting that the factor interactions in the common 3' part of the intron are impaired by the U1 small nuclear ribonucleoprotein particle (snRNP) binding to the displaced 13S donor site. Further analysis of the interactions was carried out by studying complex assembly and the accessibility to micrococcal nuclease digestion of 5'-truncated E1A substrates containing only splice sites for the 13S mRNA reaction. A deletion which brings the donor site- branch site distance to 49 nucleotides, which is just below the minimal functional distance, results in a complete block of the U4-U5-U6 snRNP binding, whereas a deletion 15 nucleotides larger results in a severe inhibition of the formation of the U2 snRNP-containing complexes. Sequence accessibility analyses performed by using the last mini-intron-containing transcript demonstrate that the interactions of U2 snRNP with the branch site are strongly impaired whereas the initial bindings of U1 snRNP to the donor site and of specific factors to the 3' splice site are not significantly modified. Our results strongly suggest that the interaction of U1 snRNP with the donor site of a mini-intron is stable enough in vitro to affect the succession of events leading to U2 snRNP binding with the branch site.


1987 ◽  
Vol 7 (2) ◽  
pp. 698-707
Author(s):  
B Chabot ◽  
J A Steitz

We examined the ability of U1 small nuclear ribonucleoproteins (U1 snRNPs) to recognize mutant and cryptic 5' splice sites on beta-globin pre-mRNA substrates using an RNase T1 protection assay. When U1 snRNPs were prebound to anti-(U1)RNP antibodies, we detected binding to mutant but not to cryptic 5' splice sites on several substrates. By contrast, in a splicing extract at 0 degree C, neither the mutated nor cryptic 5' splice sites of a human beta-globin transcript were selected as protected fragments with the same antibodies. However, after incubation of the transcript in the extract to yield splicing intermediates, fragments that included a cryptic 5' splice site were detected. The results of our analyses suggest that U1 snRNPs are involved in recognizing cryptic 5' splice sites but that interactions with other splicing components are required to stabilize the association.


2003 ◽  
Vol 23 (10) ◽  
pp. 3442-3455 ◽  
Author(s):  
Hadar Malca ◽  
Noam Shomron ◽  
Gil Ast

ABSTRACT Recognition of the 5′ splice site is an important step in mRNA splicing. To examine whether U1 approaches the 5′ splice site as a solitary snRNP or as part of a multi-snRNP complex, we used a simplified in vitro system in which a short RNA containing the 5′ splice site sequence served as a substrate in a binding reaction. This system allowed us to study the interactions of the snRNPs with the 5′ splice site without the effect of other cis-regulatory elements of precursor mRNA. We found that in HeLa cell nuclear extracts, five spliceosomal snRNPs form a complex that specifically binds the 5′ splice site through base pairing with the 5′ end of U1. This system can accommodate RNA-RNA rearrangements in which U5 replaces U1 binding to the 5′ splice site, a process that occurs naturally during the splicing reaction. The complex in which U1 and the 5′ splice site are base paired sediments in the 200S fraction of a glycerol gradient together with all five spliceosomal snRNPs. This fraction is functional in mRNA spliceosome assembly when supplemented with soluble nuclear proteins. The results argue that U1 can bind the 5′ splice site in a mammalian preassembled penta-snRNP complex.


1991 ◽  
Vol 11 (3) ◽  
pp. 1258-1269 ◽  
Author(s):  
M Himmelspach ◽  
R Gattoni ◽  
C Gerst ◽  
K Chebli ◽  
J Stévenin

We have studied the consequences of decreasing the donor site-branch site distance on splicing factor-splice site interactions by analyzing alternative splicing of adenovirus E1A pre-mRNAs in vitro. We show that the proximal 13S donor site has a cis-inhibiting effect on the 9S and 12S mRNA reactions when it is brought too close to the common branch site, suggesting that the factor interactions in the common 3' part of the intron are impaired by the U1 small nuclear ribonucleoprotein particle (snRNP) binding to the displaced 13S donor site. Further analysis of the interactions was carried out by studying complex assembly and the accessibility to micrococcal nuclease digestion of 5'-truncated E1A substrates containing only splice sites for the 13S mRNA reaction. A deletion which brings the donor site- branch site distance to 49 nucleotides, which is just below the minimal functional distance, results in a complete block of the U4-U5-U6 snRNP binding, whereas a deletion 15 nucleotides larger results in a severe inhibition of the formation of the U2 snRNP-containing complexes. Sequence accessibility analyses performed by using the last mini-intron-containing transcript demonstrate that the interactions of U2 snRNP with the branch site are strongly impaired whereas the initial bindings of U1 snRNP to the donor site and of specific factors to the 3' splice site are not significantly modified. Our results strongly suggest that the interaction of U1 snRNP with the donor site of a mini-intron is stable enough in vitro to affect the succession of events leading to U2 snRNP binding with the branch site.


1987 ◽  
Vol 7 (2) ◽  
pp. 698-707 ◽  
Author(s):  
B Chabot ◽  
J A Steitz

We examined the ability of U1 small nuclear ribonucleoproteins (U1 snRNPs) to recognize mutant and cryptic 5' splice sites on beta-globin pre-mRNA substrates using an RNase T1 protection assay. When U1 snRNPs were prebound to anti-(U1)RNP antibodies, we detected binding to mutant but not to cryptic 5' splice sites on several substrates. By contrast, in a splicing extract at 0 degree C, neither the mutated nor cryptic 5' splice sites of a human beta-globin transcript were selected as protected fragments with the same antibodies. However, after incubation of the transcript in the extract to yield splicing intermediates, fragments that included a cryptic 5' splice site were detected. The results of our analyses suggest that U1 snRNPs are involved in recognizing cryptic 5' splice sites but that interactions with other splicing components are required to stabilize the association.


1991 ◽  
Vol 11 (11) ◽  
pp. 5516-5526 ◽  
Author(s):  
M Cross ◽  
A Günzl ◽  
Z Palfi ◽  
A Bindereif

trans splicing in Trypanosoma brucei involves the ligation of the 40-nucleotide spliced leader (SL) to each of the exons of large, polycistronic pre-mRNAs and requires the function of small nuclear ribonucleoproteins (snRNPs). We have identified and characterized snRNP complexes of SL, U2, U4, and U6 RNAs in T. brucei extracts by a combination of glycerol gradient sedimentation, CsCl density centrifugation, and anti-m3G immunoprecipitation. Both the SL RNP and the U4/U6 snRNP contain salt-stable cores; the U2 snRNP, in contrast to other eucaryotic snRNPs, is not stable under stringent ionic conditions. Two distinct complexes of U6 RNA were found, a U6 snRNP and a U4/U6 snRNP. The structure of the SL RNP was analyzed in detail by oligonucleotide-directed RNase H protection and by in vitro reconstitution. Our results indicate that the 3' half of SL RNA constitutes the core protein-binding domain and that protein components of the SL RNP also bind to the U2 and U4 RNAs. Using antisense RNA affinity chromatography, we identified a set of low-molecular-mass proteins (14.8, 14, 12.5, and 10 kDa) as components of the core SL RNP.


1995 ◽  
Vol 15 (10) ◽  
pp. 5750-5756 ◽  
Author(s):  
P Champion-Arnaud ◽  
O Gozani ◽  
L Palandjian ◽  
R Reed

Pre-mRNA assembles into spliceosomal complexes in the stepwise pathway E-->A-->B-->C. We show that mutations in the metazoan branchpoint sequence (BPS) have no apparent effect on E complex formation but block the assembly of the A complex and the UV cross-linking of U2 small nuclear ribonucleoprotein particle (snRNP) proteins. Unexpectedly, a novel complex, designated E*, assembles on pre-mRNAs containing BPS mutations. Unlike the E complex, the E* complex accumulates in the presence of ATP. U1 snRNP and U2AF, which are tightly bound to pre-mRNA in the E complex, are not tightly bound in the E* complex. Significantly, previous work showed that U1 snRNP and U2AF become destabilized from pre-mRNA after E complex assembly on normal pre-mRNAs. Thus, our data are consistent with a model in which there are two steps in the transition from the E complex to the A complex (E-->E*-->A). In the first step, U1 snRNP and U2AF are destabilized in an ATP-dependent, BPS-independent reaction. In the second step, the stable binding of U2 snRNP occurs in a BPS-dependent reaction.


1997 ◽  
Vol 17 (5) ◽  
pp. 2944-2953 ◽  
Author(s):  
C C Query ◽  
P S McCaw ◽  
P A Sharp

The association of U2 snRNP with the pre-mRNA branch region is a critical step in the assembly of spliceosomal complexes. We describe an assembly process that reveals both minimal requirements for formation of a U2 snRNP-substrate RNA complex, here designated the Amin complex, and specific interactions with the branch site adenosine. The substrate is a minimal RNA oligonucleotide, containing only a branch sequence and polypyrimidine tract. Interactions at the branch site adenosine and requirements for polypyrimidine tract-binding proteins for the Amin complex are the same as those of authentic prespliceosome complex A. Surprisingly, Amin complex formation does not require U1 snRNP or ATP, suggesting that these factors are not necessary for stable binding of U2 snRNP per se, but rather are necessary for accessibility of components on longer RNA substrates. Furthermore, there is an ATP-dependent activity that releases or destabilizes U2 snRNP from branch sequences. The simplicity of the Amin complex will facilitate a detailed understanding of the assembly of prespliceosomes.


2002 ◽  
Vol 22 (15) ◽  
pp. 5443-5450 ◽  
Author(s):  
Zhi-Ren Liu

ABSTRACT Modulation of the interaction between U1 snRNP and the 5′ splice site (5′ss) is a key event that governs 5′ss recognition and spliceosome assembly. Using the methylene blue-mediated cross-linking method (Z. R. Liu, A. M. Wilkie, M. J. Clemens, and C. W. Smith, RNA 2:611-621, 1996), a 65-kDa protein (p65) was shown to interact with the U1-5′ss duplex during spliceosome assembly (Z. R. Liu, B. Sargueil, and C. W. Smith, Mol. Cell. Biol. 18:6910-6920, 1998). In this report, p65 was identified as p68 RNA helicase and shown to be essential for in vitro pre-mRNA splicing. Depletion of endogenous p68 RNA helicase does not affect the loading of the U1 snRNP to the 5′ss during early stage of splicing. However, dissociation of the U1 from the 5′ss is largely inhibited. The data suggest that p68 RNA helicase functions in destabilizing the U1-5′ss interactions. Furthermore, depletion of p68 RNA helicase arrested spliceosome assembly at the prespliceosome stage, suggesting that p68 may play a role in the transition from prespliceosome to spliceosome.


Sign in / Sign up

Export Citation Format

Share Document