Transcription of the ADH2 gene in Saccharomyces cerevisiae is limited by positive factors that bind competitively to its intact promoter region on multicopy plasmids

1987 ◽  
Vol 7 (3) ◽  
pp. 1233-1241
Author(s):  
M Irani ◽  
W E Taylor ◽  
E T Young

Transcription of the ADH2 gene in the yeast Saccharomyces cerevisiae was inhibited by excess copies of its own promoter region. This competition effect was promoter specific and required the upstream activation sequence of ADH2 as well as sequences 3' to the TATA box. Introducing excess copies of ADR1, an ADH2-specific regulatory gene, did not alleviate the competition that was observed in these circumstances during both constitutive and derepressed ADH2 expression. Excess copies of the upstream region did not release ADH2 from glucose repression, consistent with the view that ADH2 is regulated by positive trans-acting factors.

1987 ◽  
Vol 7 (3) ◽  
pp. 1233-1241 ◽  
Author(s):  
M Irani ◽  
W E Taylor ◽  
E T Young

Transcription of the ADH2 gene in the yeast Saccharomyces cerevisiae was inhibited by excess copies of its own promoter region. This competition effect was promoter specific and required the upstream activation sequence of ADH2 as well as sequences 3' to the TATA box. Introducing excess copies of ADR1, an ADH2-specific regulatory gene, did not alleviate the competition that was observed in these circumstances during both constitutive and derepressed ADH2 expression. Excess copies of the upstream region did not release ADH2 from glucose repression, consistent with the view that ADH2 is regulated by positive trans-acting factors.


1989 ◽  
Vol 9 (12) ◽  
pp. 5350-5358
Author(s):  
J D Trawick ◽  
C Rogness ◽  
R O Poyton

Transcription of Saccharomyces cerevisiae COX6, the nuclear gene for subunit VI of cytochrome c oxidase, is activated in heme-proficient cells, requires the HAP2 gene, and is subject to glucose repression. In this study, by deletion mutagenesis of the COX6 promoter, we identified two regions that are important for transcription. The first was an upstream activation site, UAS6. It was found to be contained within an 84-base-pair (bp) sequence, between bp -256 and -340 of the COX6 translational initiation codon, and to contain sequences required for activation by heme and HAP2 and for release from glucose repression. When located upstream of a CYC1-lacZ fusion gene, deleted for both of its UASs, this segment functioned as a UAS element. Although UAS6 could promote expression in either orientation, it showed a marked orientation dependence in its response to HAP2 and the carbon source. The second region lay between bp -255 and -91. It contained two of the three major 5' termini of COX6 mRNAs and a putative TATA box. Deletion analysis of this region demonstrated that the putative TATA box is not required for transcription and that this region is separable into two redundant domains.


1989 ◽  
Vol 9 (1) ◽  
pp. 34-42 ◽  
Author(s):  
J Yu ◽  
M S Donoviel ◽  
E T Young

A 22-base-pair (bp) inverted repeat present in the ADH2 promoter is an upstream activation sequence (UAS1) which confers ADR1-dependent activation upon a heterologous Saccharomyces cerevisiae promoter. UAS1 was nonfunctional when placed within an intron 3' to the transcription start site. The 11-bp sequence which constitutes one-half of the UAS1 palindrome did not activate transcription in a single copy, as direct repeats, or in an inverted orientation opposite to that of ADH2 UAS1. Furthermore, two pairs of symmetrical point mutations within UAS1 significantly reduced activation. This result suggests that a specific orientation of sequences within UAS1 is necessary for ADR1-dependent activation. We determined that an ADR1-dependent complex was formed with UAS1 and, to a lesser extent, with the nonfunctional 11-bp half palindrome. However, the 11 bp did not confer UAS activity, suggesting that ADR1 binding is not sufficient for activation in vivo. ADR1 did not bind to mutant UAS1 sequences in vitro, indicating that their decreased activation is attributable to a reduced affinity of ADR1 for these sequences. We also identified an additional 20-bp ADH2 element (UAS2) that increased the expression of CYC1-lacZ 20-fold when combined with UAS1. UAS2 permitted ADR1-independent, glucose-regulated expression of the hybrid gene. Consistent with this observation, ADR1 did not form a detectable complex with UAS2. Deletion of UAS2 at the chromosomal ADH2 locus virtually abolished ADH2 derepression and had no effect on glucose repression.


1989 ◽  
Vol 9 (1) ◽  
pp. 34-42
Author(s):  
J Yu ◽  
M S Donoviel ◽  
E T Young

A 22-base-pair (bp) inverted repeat present in the ADH2 promoter is an upstream activation sequence (UAS1) which confers ADR1-dependent activation upon a heterologous Saccharomyces cerevisiae promoter. UAS1 was nonfunctional when placed within an intron 3' to the transcription start site. The 11-bp sequence which constitutes one-half of the UAS1 palindrome did not activate transcription in a single copy, as direct repeats, or in an inverted orientation opposite to that of ADH2 UAS1. Furthermore, two pairs of symmetrical point mutations within UAS1 significantly reduced activation. This result suggests that a specific orientation of sequences within UAS1 is necessary for ADR1-dependent activation. We determined that an ADR1-dependent complex was formed with UAS1 and, to a lesser extent, with the nonfunctional 11-bp half palindrome. However, the 11 bp did not confer UAS activity, suggesting that ADR1 binding is not sufficient for activation in vivo. ADR1 did not bind to mutant UAS1 sequences in vitro, indicating that their decreased activation is attributable to a reduced affinity of ADR1 for these sequences. We also identified an additional 20-bp ADH2 element (UAS2) that increased the expression of CYC1-lacZ 20-fold when combined with UAS1. UAS2 permitted ADR1-independent, glucose-regulated expression of the hybrid gene. Consistent with this observation, ADR1 did not form a detectable complex with UAS2. Deletion of UAS2 at the chromosomal ADH2 locus virtually abolished ADH2 derepression and had no effect on glucose repression.


1989 ◽  
Vol 9 (12) ◽  
pp. 5350-5358 ◽  
Author(s):  
J D Trawick ◽  
C Rogness ◽  
R O Poyton

Transcription of Saccharomyces cerevisiae COX6, the nuclear gene for subunit VI of cytochrome c oxidase, is activated in heme-proficient cells, requires the HAP2 gene, and is subject to glucose repression. In this study, by deletion mutagenesis of the COX6 promoter, we identified two regions that are important for transcription. The first was an upstream activation site, UAS6. It was found to be contained within an 84-base-pair (bp) sequence, between bp -256 and -340 of the COX6 translational initiation codon, and to contain sequences required for activation by heme and HAP2 and for release from glucose repression. When located upstream of a CYC1-lacZ fusion gene, deleted for both of its UASs, this segment functioned as a UAS element. Although UAS6 could promote expression in either orientation, it showed a marked orientation dependence in its response to HAP2 and the carbon source. The second region lay between bp -255 and -91. It contained two of the three major 5' termini of COX6 mRNAs and a putative TATA box. Deletion analysis of this region demonstrated that the putative TATA box is not required for transcription and that this region is separable into two redundant domains.


1986 ◽  
Vol 6 (12) ◽  
pp. 4335-4343
Author(s):  
J E Ogden ◽  
C Stanway ◽  
S Kim ◽  
J Mellor ◽  
A J Kingsman ◽  
...  

The Saccharomyces cerevisiae PGK (phosphoglycerate kinase) gene encodes one of the most abundant mRNA and protein species in the cell. To identify the promoter sequences required for the efficient expression of PGK, we undertook a detailed internal deletion analysis of the 5' noncoding region of the gene. Our analysis revealed that PGK has an upstream activation sequence (UASPGK) located between 402 and 479 nucleotides upstream from the initiating ATG sequence which is required for full transcriptional activity. Deletion of this sequence caused a marked reduction in the levels of PGK transcription. We showed that PGK has no requirement for TATA sequences; deletion of one or both potential TATA sequences had no effect on either the levels of PGK expression or the accuracy of transcription initiation. We also showed that the UASPGK functions as efficiently when in the inverted orientation and that it can enhance transcription when placed upstream of a TRP1-IFN fusion gene comprising the promoter of TRP1 fused to the coding region of human interferon alpha-2.


1991 ◽  
Vol 11 (10) ◽  
pp. 5101-5112
Author(s):  
J S Flick ◽  
M Johnston

Growth of the yeast Saccharomyces cerevisiae on glucose leads to repression of transcription of many genes required for alternative carbohydrate metabolism. The GRR1 gene appears to be of central importance to the glucose repression mechanism, because mutations in GRR1 result in a pleiotropic loss of glucose repression (R. Bailey and A. Woodword, Mol. Gen. Genet. 193:507-512, 1984). We have isolated the GRR1 gene and determined that null mutants are viable and display a number of growth defects in addition to the loss of glucose repression. Surprisingly, grr1 mutations convert SUC2, normally a glucose-repressed gene, into a glucose-induced gene. GRR1 encodes a protein of 1,151 amino acids that is expressed constitutively at low levels in yeast cells. GRR1 protein contains 12 tandem repeats of a sequence similar to leucine-rich motifs found in other proteins that may mediate protein-protein interactions. Indeed, cell fractionation studies are consistent with this view, suggesting that GRR1 protein is tightly associated with a particulate protein fraction in yeast extracts. The combined genetic and molecular data are consistent with the idea that GRR1 protein is a primary response element in the glucose repression pathway and is required for the generation or interpretation of the signal that induces glucose repression.


2020 ◽  
Vol 295 (6) ◽  
pp. 1716-1726 ◽  
Author(s):  
Liangtao Li ◽  
Sophie Bertram ◽  
Jerry Kaplan ◽  
Xuan Jia ◽  
Diane M. Ward

Budding yeast (Saccharomyces cerevisiae) responds to low cytosolic iron by up-regulating the expression of iron import genes; iron import can reflect iron transport into the cytosol or mitochondria. Mmt1 and Mmt2 are nuclearly encoded mitochondrial proteins that export iron from the mitochondria into the cytosol. Here we report that MMT1 and MMT2 expression is transcriptionally regulated by two pathways: the low-iron-sensing transcription factor Aft1 and the oxidant-sensing transcription factor Yap1. We determined that MMT1 and MMT2 expression is increased under low-iron conditions and decreased when mitochondrial iron import is increased through overexpression of the high-affinity mitochondrial iron importer Mrs3. Moreover, loss of iron-sulfur cluster synthesis induced expression of MMT1 and MMT2. We show that exposure to the oxidant H2O2 induced MMT1 expression but not MMT2 expression and identified the transcription factor Yap1 as being involved in oxidant-mediated MMT1 expression. We defined Aft1- and Yap1-dependent transcriptional sites in the MMT1 promoter that are necessary for low-iron- or oxidant-mediated MMT1 expression. We also found that the MMT2 promoter contains domains that are important for regulating its expression under low-iron conditions, including an upstream region that appears to partially repress expression under low-iron conditions. Our findings reveal that MMT1 and MMT2 are induced under low-iron conditions and that the low-iron regulator Aft1 is required for this induction. We further uncover an Aft1-binding site in the MMT1 promoter sufficient for inducing MMT1 transcription and identify an MMT2 promoter region required for low iron induction.


1993 ◽  
Vol 13 (8) ◽  
pp. 4999-5009
Author(s):  
D W Griggs ◽  
M Johnston

The GAL4 gene of Saccharomyces cerevisiae (encoding the activator of transcription of the GAL genes) is poorly expressed and is repressed during growth on glucose. To determine the basis for its weak expression and to identify DNA sequences recognized by proteins that activate transcription of a gene that itself encodes an activator of transcription, we have analyzed GAL4 promoter structure. We show that the GAL4 promoter is about 90-fold weaker than the strong GAL1 promoter and at least 7-fold weaker than the feeble URA3 promoter and that this low level of GAL4 expression is primarily due to a weak promoter. By deletion mapping, the GAL4 promoter can be divided into three functional regions. Two of these regions contain positive elements; a distal region termed the UASGAL4 (upstream activation sequence) contains redundant elements that increase promoter function, and a central region termed the UESGAL4 (upstream essential sequence) is essential for even basal levels of GAL4 expression. The third element, an upstream repression sequence, mediates glucose repression of GAL4 expression and is located between the UES and the transcriptional start site. The UASGAL4 is unusual because it is not interchangable with UAS elements in other yeast promoters; it does not function as a UAS element when inserted in a CYC1 promoter, and a normally strong UAS functions poorly in place of UASGAL4 in the GAL4 promoter. Similarly, the UES element of GAL4 does not function as a TATA element in a test promoter, and consensus TATA elements do not function in place of UES elements in the GAL4 promoter. These results suggest that GAL4 contains a weak TATA-less promoter and that the proteins regulating expression of this regulatory gene may be novel and context specific.


Sign in / Sign up

Export Citation Format

Share Document