gal4 expression
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 5)

H-INDEX

8
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Lisa Mais ◽  
Peter Hirsch ◽  
Claire Managan ◽  
Kaiyu Wang ◽  
Konrad Rokicki ◽  
...  

Studies of individual neurons in the Drosophila nervous system are facilitated by transgenic lines that sparsely and repeatably label respective neurons of interest. Sparsity can be enhanced by means of intersectional approaches like the split-GAL4 system, which labels the positive intersection of the expression patterns of two (denser) GAL4 lines. To this end, two GAL4 lines have to be identified as labelling a neuron of interest. Current approaches to tackling this task include visual inspection, as well as automated search in 2d projection images, of single cell multi-color flip-out (MCFO) acquisitions of GAL4 expression patterns. There is to date no automated method available that performs full 3d search in MCFO imagery of GAL4 lines, nor one that leverages automated reconstructions of the labelled neuron morphologies. To close this gap, we propose PatchPerPixMatch, a fully automated approach for finding a given neuron morphology in MCFO acquisitions of Gen1 GAL4 lines. PatchPerPixMatch performs automated instance segmentation of MCFO acquisitions, and subsequently searches for a target neuron morphology by minimizing an objective that aims at covering the target with a set of well-fitting segmentation fragments. PatchPerPixMatch is computationally efficient albeit being full 3d, while also highly robust to inaccuracies in the automated neuron instance segmentation. We are releasing PatchPerPixMatch search results for ~30,000 neuron morphologies from the Drosophila hemibrain in ~20,000 MCFO acquisitions of ~3,500 Gen1 GAL4 lines.


2021 ◽  
Author(s):  
Colin D. McClure ◽  
Amira Hassan ◽  
Aneisha Duggal ◽  
Chee Ying Sia ◽  
Tony D. Southall

AbstractThe ability to control transgene expression, both spatially and temporally, is essential for studying model organisms. In Drosophila, spatial control is primarily provided by the GAL4/UAS system, whilst temporal control relies on a temperature-sensitive GAL80 (which inhibits GAL4) and drug-inducible systems. However, these are not ideal. Shifting temperature can impact on many physiological and behavioural traits, and the current drug-inducible systems are either leaky, toxic, incompatible with existing GAL4-driver lines, or do not generate effective levels of expression. Here we describe the Auxin-inducible Gene Expression System (AGES). AGES relies on the auxin-dependent degradation of a ubiquitously expressed GAL80, and therefore, is compatible with existing GAL4-driver lines. Water-soluble auxin is added to fly food at a low, non-lethal, concentration, which induces expression comparable to uninhibited GAL4 expression. The system works in both larvae and adults, providing a stringent, non-lethal, cost-effective, and convenient method for temporally controlling GAL4 activity in Drosophila.


2020 ◽  
Vol 10 (11) ◽  
pp. 4147-4158
Author(s):  
Lesley N. Weaver ◽  
Tianlu Ma ◽  
Daniela Drummond-Barbosa

Precise genetic manipulation of specific cell types or tissues to pinpoint gene function requirement is a critical step in studies aimed at unraveling the intricacies of organismal physiology. Drosophila researchers heavily rely on the UAS/Gal4/Gal80 system for tissue-specific manipulations; however, it is often unclear whether the reported Gal4 expression patterns are indeed specific to the tissue of interest such that experimental results are not confounded by secondary sites of Gal4 expression. Here, we surveyed the expression patterns of commonly used Gal4 drivers in adult Drosophila female tissues under optimal conditions and found that multiple drivers have unreported secondary sites of expression beyond their published cell type/tissue expression pattern. These results underscore the importance of thoroughly characterizing Gal4 tools as part of a rigorous experimental design that avoids potential misinterpretation of results as we strive for understanding how the function of a specific gene/pathway in one tissue contributes to whole-body physiology.


Author(s):  
Geoffrey W. Meissner ◽  
Zachary Dorman ◽  
Aljoscha Nern ◽  
Kaitlyn Forster ◽  
Theresa Gibney ◽  
...  

AbstractPrecise, repeatable genetic access to specific neurons via the GAL4/UAS system and related methods is a key advantage of Drosophila neuroscience. Neuronal targeting is typically documented using light microscopy of full GAL4 expression patterns, which mostly lack the single-cell resolution required for reliable cell type identification. Here we use stochastic GAL4 labeling with the MultiColor FlpOut approach to generate cellular resolution confocal images at large scale. We are releasing aligned images of 27,000 such adult central nervous systems.An anticipated use of this resource is to bridge the gap between electron microscopy-identified neurons and light microscopy-based intersectional genetic approaches such as the split-GAL4 system. Identifying the individual neurons that make up each GAL4 expression pattern improves the prediction of which GAL4 enhancer fragments best combine via split-GAL4 to target neurons of interest. To this end we have developed the NeuronBridge search tool, which matches these light microscope neuronal images to neurons in the recently published FlyEM hemibrain. This work thus provides a resource and search tool that will significantly enhance both the efficiency and efficacy of split-GAL4 targeting of EM-identified neurons and further advance Drosophila neuroscience.


2019 ◽  
Author(s):  
Sophia H. Webster ◽  
Michael R. Vella ◽  
Maxwell J. Scott

AbstractWe report the development and laboratory testing of a novel Killer-Rescue (K-R) self-limiting gene drive system in Drosophila melanogaster. This K-R system utilizes the well-characterized Gal4/UAS binary expression system and the Gal4 inhibitor, Gal80. Three killer (K) lines were tested; these used either an autoregulated UAS-Gal4 or UAS-Gal4 plus UAS-hid transgene. One universal rescue (R) line was used, UAS-Gal80, to inhibit Gal4 expression. The K lines are lethal and cause death in the absence of R. We show that Gal4 RNA levels are high in the absence of R. Death is possibly due to transcriptional squelching from high levels of Gal4. When R is present, Gal4 activation of Gal80 would lead to inhibition of Gal4 and prevent overexpression. With a single release ratio of 2:1 engineered K-R to wildtype, we find that K drives R through the population while the percent of wild type individuals decreases each generation. The choice of core promoter for a UAS-Gal4 construct strongly influences the K-R system. With the strong hsp70 core promoter, K was very effective but was quickly lost from the population. With the weaker DSCP core promoter, K persisted for longer allowing the frequency of individuals with at least one copy of R to increase to over 98%. This simple gene drive system could be readily adapted to other species such as mosquito disease vectors for driving anti-viral or anti-parasite genes.SignificanceHere we report the development and testing of a novel self-limiting gene drive system, Killer-Rescue, in Drosophila melanogaster. This system is composed of an auto-regulated Gal4 Killer (K) and a Gal4-activated Gal80 Rescue (R). Overexpression of Gal4 is lethal but in the presence of R, activation of Gal80 leads to much lower levels of Gal4 and rescue of lethality. We demonstrate that with a single 2:1 engineered to wildtype release, more than 98% of the population carry R after eight generations. We discuss how this Killer-Rescue system may be used for population replacement in a human health pest, Aedes aegypti, or for population suppression in an agricultural pest, Drosophila suzukii.


2018 ◽  
Author(s):  
Steven Z. DeLuca ◽  
Allan C. Spradling

ABSTRACTControlling the expression of genes using a binary system involving the yeast GAL4 transcription factor has been a mainstay of Drosophila melanogaster developmental genetics for twenty-five years. However, most existing GAL4 expression constructs only function effectively in somatic cells, but not in germ cells during oogenesis, for unknown reasons. A special UAS promoter, UASp was created that does express during oogenesis, but the need to use different constructs for somatic and female germline cells has remained a significant technical limitation. Here we show that the expression problem of UASt and many other Drosophila molecular tools in germline cells is caused by their core Hsp70 promoter sequences, which are targeted in female germ cells by Hsp70-directed piRNAs generated from endogenous Hsp70 gene sequences. In a genetic background lacking genomic Hsp70 genes and associated piRNAs, UASt-based constructs function effectively during oogenesis. By reducing Hsp70 sequences targeted by piRNAs, we created UASz, which functions better than UASp in the germline and like UASt in somatic cells.


2017 ◽  
Author(s):  
Shamprasad Varija Raghu ◽  
Farhan Mohammad ◽  
Chua Jia Yi ◽  
Claudia S. Barros ◽  
Joanne Lam ◽  
...  

AbstractThe analysis of behavior requires that the underlying neuronal circuits are identified and genetically isolated. In several major model species—most notably Drosophila, neurogeneticists identify and isolate neural circuits with a binary heterologous expression-control system: Gal4–UASG. One limitation of Gal4–UASG is that expression patterns are often too broad to map circuits precisely. To help refine the range of Gal4 lines, we developed an intersectional genetic AND operator. Interoperable with Gal4, the new system’s key component is a fusion protein in which the DNA-binding domain of Gal4 has been replaced with a zinc finger domain with a different DNA-binding specificity. In combination with its cognate binding site (UASZ) the zinc-finger-replaced Gal4 (‘Zal1’) was functional as a standalone transcription factor. Zal1 transgenes also refined Gal4 expression ranges when combined with UASGZ, a hybrid upstream activation sequence. In this way, combining Gal4 and Zal1 drivers captured restricted cell sets compared with single drivers and improved genetic fidelity. This intersectional genetic AND operation presumably derives from the action of a heterodimeric transcription factor: Gal4-Zal1. Configurations of Zal1–UASZ and Zal1-Gal4-UASGZ are versatile tools for defining, refining, and manipulating targeted neural expression patterns with precision.


eNeuro ◽  
2017 ◽  
Vol 4 (3) ◽  
pp. ENEURO.0143-17.2017 ◽  
Author(s):  
Murali K. Bollepalli ◽  
Marije E. Kuipers ◽  
Che-Hsiung Liu ◽  
Sabrina Asteriti ◽  
Roger C. Hardie

2016 ◽  
Vol 26 (15) ◽  
pp. 1943-1954 ◽  
Author(s):  
Karin Panser ◽  
Laszlo Tirian ◽  
Florian Schulze ◽  
Santiago Villalba ◽  
Gregory S.X.E. Jefferis ◽  
...  

2016 ◽  
Vol 14 (2) ◽  
pp. 221-233
Author(s):  
Martin Trapp ◽  
Florian Schulze ◽  
Alexey A. Novikov ◽  
Laszlo Tirian ◽  
Barry J. Dickson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document