Cloning and characterization of a core histone gene tandem repeat in Urechis caupo

1988 ◽  
Vol 8 (10) ◽  
pp. 4425-4432
Author(s):  
L D Ingham ◽  
F C Davis

A Urechis caupo histone gene tandem repeat has been isolated from a 5.0-kilobase EcoRI genomic library in lambda gtWES.lambda B. Genomic reconstruction experiments indicate that the cloned sequence is repeated approximately 100 times per haploid genome. Unique restriction fragments from the cloned sequence hybridize with individual core histone genes from a histone gene tandem repeat of the sea urchin, Strongylocentrotus purpuratus. No hybridization is detected when restriction digests are probed with a sea urchin H1 histone gene. Hybrid selection and in vitro translation of embryo mRNAs demonstrate that the clone contains sequences complementary to all four core histones; however, no H1 histone is detected among the translation products. Based on a restriction site map of the clone and the subcloned sequences which hybridize to the histone mRNAs, the order of the core histone genes in the clone is shown to be H3 H2A H2B H4. S1 nuclease hybrid protection mapping is used to locate the coding regions and to determine the transcript lengths of the core histone mRNAs. The transcript lengths of H2A, H2B, H3, and H4 mRNAs are approximately 464, 438, 494, and 397 bases, respectively. The S1 nuclease mapping also demonstrates that H2A and H4 are transcribed from one DNA strand while H2B and H3 are transcribed from the other strand. In the tandem repeat, the genes are organized so that transcription of the H2A-H2B and H3-H4 gene pairs is divergent.

1988 ◽  
Vol 8 (10) ◽  
pp. 4425-4432 ◽  
Author(s):  
L D Ingham ◽  
F C Davis

A Urechis caupo histone gene tandem repeat has been isolated from a 5.0-kilobase EcoRI genomic library in lambda gtWES.lambda B. Genomic reconstruction experiments indicate that the cloned sequence is repeated approximately 100 times per haploid genome. Unique restriction fragments from the cloned sequence hybridize with individual core histone genes from a histone gene tandem repeat of the sea urchin, Strongylocentrotus purpuratus. No hybridization is detected when restriction digests are probed with a sea urchin H1 histone gene. Hybrid selection and in vitro translation of embryo mRNAs demonstrate that the clone contains sequences complementary to all four core histones; however, no H1 histone is detected among the translation products. Based on a restriction site map of the clone and the subcloned sequences which hybridize to the histone mRNAs, the order of the core histone genes in the clone is shown to be H3 H2A H2B H4. S1 nuclease hybrid protection mapping is used to locate the coding regions and to determine the transcript lengths of the core histone mRNAs. The transcript lengths of H2A, H2B, H3, and H4 mRNAs are approximately 464, 438, 494, and 397 bases, respectively. The S1 nuclease mapping also demonstrates that H2A and H4 are transcribed from one DNA strand while H2B and H3 are transcribed from the other strand. In the tandem repeat, the genes are organized so that transcription of the H2A-H2B and H3-H4 gene pairs is divergent.


1983 ◽  
Vol 3 (6) ◽  
pp. 974-981 ◽  
Author(s):  
E J Baker ◽  
A A Infante

The relative cytoplasmic accumulation of the individual histone mRNAs in sea urchins was determined by gel analysis of 3H-labeled cytoplasmic RNA isolated from embryos of the early cleavage through the mesenchyme blastula stages. A number of separate determinations showed that H1 mRNA accumulates at a molar ratio of 0.5 or less compared with each of the H2 or H3 core histone mRNAs through approximately the first 12 h of embryonic development. After this time, the accumulation of H1 mRNA increases relative to the core histone mRNAs, and approximately equimolar amounts of the histone mRNAs are produced by about the 14-h stage. The equimolar synthesis of H1 mRNA appears to be transient, returning to 0.5-molar levels several hours later. The increase in H1 mRNA accumulation, relative to the core histone RNAs, is coincident with the transition from expression of the early (alpha) sea urchin histone gene set to the late histone genes. Since all five of the early histone genes occur in a 1:1 ratio within repeating units, the data suggest that the genes within a single repeat, or their immediate products, are individually regulated. Gel analysis of the proteins synthesized in vivo by embryos demonstrates that the pattern of synthesis of the histone proteins reflects the changing ratios of the histone mRNAs.


1983 ◽  
Vol 3 (6) ◽  
pp. 974-981
Author(s):  
E J Baker ◽  
A A Infante

The relative cytoplasmic accumulation of the individual histone mRNAs in sea urchins was determined by gel analysis of 3H-labeled cytoplasmic RNA isolated from embryos of the early cleavage through the mesenchyme blastula stages. A number of separate determinations showed that H1 mRNA accumulates at a molar ratio of 0.5 or less compared with each of the H2 or H3 core histone mRNAs through approximately the first 12 h of embryonic development. After this time, the accumulation of H1 mRNA increases relative to the core histone mRNAs, and approximately equimolar amounts of the histone mRNAs are produced by about the 14-h stage. The equimolar synthesis of H1 mRNA appears to be transient, returning to 0.5-molar levels several hours later. The increase in H1 mRNA accumulation, relative to the core histone RNAs, is coincident with the transition from expression of the early (alpha) sea urchin histone gene set to the late histone genes. Since all five of the early histone genes occur in a 1:1 ratio within repeating units, the data suggest that the genes within a single repeat, or their immediate products, are individually regulated. Gel analysis of the proteins synthesized in vivo by embryos demonstrates that the pattern of synthesis of the histone proteins reflects the changing ratios of the histone mRNAs.


DNA Sequence ◽  
1992 ◽  
Vol 2 (4) ◽  
pp. 247-256 ◽  
Author(s):  
Francis C. Davis ◽  
John C. Shelton ◽  
Lynwood D. Ingham

2005 ◽  
Vol 25 (20) ◽  
pp. 9127-9137 ◽  
Author(s):  
Peter R. Eriksson ◽  
Geetu Mendiratta ◽  
Neil B. McLaughlin ◽  
Tyra G. Wolfsberg ◽  
Leonardo Mariño-Ramírez ◽  
...  

ABSTRACT The yeast SPT10 gene encodes a putative histone acetyltransferase (HAT) implicated as a global transcription regulator acting through basal promoters. Here we address the mechanism of this global regulation. Although microarray analysis confirmed that Spt10p is a global regulator, Spt10p was not detected at any of the most strongly affected genes in vivo. In contrast, the presence of Spt10p at the core histone gene promoters in vivo was confirmed. Since Spt10p activates the core histone genes, a shortage of histones could occur in spt10Δ cells, resulting in defective chromatin structure and a consequent activation of basal promoters. Consistent with this hypothesis, the spt10Δ phenotype can be rescued by extra copies of the histone genes and chromatin is poorly assembled in spt10Δ cells, as shown by irregular nucleosome spacing and reduced negative supercoiling of the endogenous 2μm plasmid. Furthermore, Spt10p binds specifically and highly cooperatively to pairs of upstream activating sequence elements in the core histone promoters [consensus sequence, (G/A)TTCCN6TTCNC], consistent with a direct role in histone gene regulation. No other high-affinity sites are predicted in the yeast genome. Thus, Spt10p is a sequence-specific activator of the histone genes, possessing a DNA-binding domain fused to a likely HAT domain.


1989 ◽  
Vol 9 (6) ◽  
pp. 2332-2340
Author(s):  
G H Cheng ◽  
A I Skoultchi

Chemically induced differentiation of murine erythroleukemia cells is a multistep process involving a precommitment period in which exposure to inducer leads to cells that are irreversibly committed to terminal differentiation. Certain changes in the expression of cellular proto-oncogenes are an important feature of the precommitment phase. We have identified two H1 histone genes that are rapidly induced during this period. Unlike most histone genes, these two H1 genes encode polyadenylated mRNAs with long 3' untranslated regions. To investigate the relationship between induction of the H1 mRNAs and changes in proto-oncogene expression, we studied two independent series of mouse erythroleukemia cell lines that are inhibited from differentiating because of deregulated expression of transfected copies of c-myc or c-myb. The results showed that induction of the H1 mRNAs was negatively regulated by c-myc. The two H1 histone genes are among the first examples of specific cellular genes that are regulated by c-myc. The timing of their induction suggests that they may play an important role in achieving commitment to terminal differentiation.


2021 ◽  
pp. mbc.E20-10-0645
Author(s):  
James P. Kemp ◽  
Xiao-Cui Yang ◽  
Zbigniew Dominski ◽  
William F. Marzluff ◽  
Robert J. Duronio

The Histone Locus Body (HLB) is an evolutionarily conserved nuclear body that regulates the transcription and processing of replication-dependent (RD) histone mRNAs, which are the only eukaryotic mRNAs lacking a poly-A tail. Many nuclear bodies contain distinct domains, but how internal organization is related to nuclear body function is not fully understood. Here, we demonstrate using structured illumination microscopy that Drosophila HLBs have a “core-shell” organization in which the internal core contains transcriptionally active RD histone genes. The N-terminus of Mxc, which contains a domain required for Mxc oligomerization, HLB assembly, and RD histone gene expression, is enriched in the HLB core. In contrast, the C-terminus of Mxc is enriched in the HLB outer shell as is FLASH, a component of the active U7 snRNP that co-transcriptionally cleaves RD histone pre-mRNA. Consistent with these results, we show biochemically that FLASH binds directly to the Mxc C-terminal region. In the rapid S-M nuclear cycles of syncytial blastoderm Drosophila embryos, the HLB disassembles at mitosis and reassembles the core-shell arrangement as histone gene transcription is activated immediately after mitosis. Thus, the core-shell organization is coupled to zygotic histone gene transcription, revealing a link between HLB internal organization and RD histone gene expression.


1989 ◽  
Vol 9 (6) ◽  
pp. 2332-2340 ◽  
Author(s):  
G H Cheng ◽  
A I Skoultchi

Chemically induced differentiation of murine erythroleukemia cells is a multistep process involving a precommitment period in which exposure to inducer leads to cells that are irreversibly committed to terminal differentiation. Certain changes in the expression of cellular proto-oncogenes are an important feature of the precommitment phase. We have identified two H1 histone genes that are rapidly induced during this period. Unlike most histone genes, these two H1 genes encode polyadenylated mRNAs with long 3' untranslated regions. To investigate the relationship between induction of the H1 mRNAs and changes in proto-oncogene expression, we studied two independent series of mouse erythroleukemia cell lines that are inhibited from differentiating because of deregulated expression of transfected copies of c-myc or c-myb. The results showed that induction of the H1 mRNAs was negatively regulated by c-myc. The two H1 histone genes are among the first examples of specific cellular genes that are regulated by c-myc. The timing of their induction suggests that they may play an important role in achieving commitment to terminal differentiation.


Sign in / Sign up

Export Citation Format

Share Document