scholarly journals Global Regulation by the Yeast Spt10 Protein Is Mediated through Chromatin Structure and the Histone Upstream Activating Sequence Elements

2005 ◽  
Vol 25 (20) ◽  
pp. 9127-9137 ◽  
Author(s):  
Peter R. Eriksson ◽  
Geetu Mendiratta ◽  
Neil B. McLaughlin ◽  
Tyra G. Wolfsberg ◽  
Leonardo Mariño-Ramírez ◽  
...  

ABSTRACT The yeast SPT10 gene encodes a putative histone acetyltransferase (HAT) implicated as a global transcription regulator acting through basal promoters. Here we address the mechanism of this global regulation. Although microarray analysis confirmed that Spt10p is a global regulator, Spt10p was not detected at any of the most strongly affected genes in vivo. In contrast, the presence of Spt10p at the core histone gene promoters in vivo was confirmed. Since Spt10p activates the core histone genes, a shortage of histones could occur in spt10Δ cells, resulting in defective chromatin structure and a consequent activation of basal promoters. Consistent with this hypothesis, the spt10Δ phenotype can be rescued by extra copies of the histone genes and chromatin is poorly assembled in spt10Δ cells, as shown by irregular nucleosome spacing and reduced negative supercoiling of the endogenous 2μm plasmid. Furthermore, Spt10p binds specifically and highly cooperatively to pairs of upstream activating sequence elements in the core histone promoters [consensus sequence, (G/A)TTCCN6TTCNC], consistent with a direct role in histone gene regulation. No other high-affinity sites are predicted in the yeast genome. Thus, Spt10p is a sequence-specific activator of the histone genes, possessing a DNA-binding domain fused to a likely HAT domain.

1983 ◽  
Vol 3 (6) ◽  
pp. 974-981 ◽  
Author(s):  
E J Baker ◽  
A A Infante

The relative cytoplasmic accumulation of the individual histone mRNAs in sea urchins was determined by gel analysis of 3H-labeled cytoplasmic RNA isolated from embryos of the early cleavage through the mesenchyme blastula stages. A number of separate determinations showed that H1 mRNA accumulates at a molar ratio of 0.5 or less compared with each of the H2 or H3 core histone mRNAs through approximately the first 12 h of embryonic development. After this time, the accumulation of H1 mRNA increases relative to the core histone mRNAs, and approximately equimolar amounts of the histone mRNAs are produced by about the 14-h stage. The equimolar synthesis of H1 mRNA appears to be transient, returning to 0.5-molar levels several hours later. The increase in H1 mRNA accumulation, relative to the core histone RNAs, is coincident with the transition from expression of the early (alpha) sea urchin histone gene set to the late histone genes. Since all five of the early histone genes occur in a 1:1 ratio within repeating units, the data suggest that the genes within a single repeat, or their immediate products, are individually regulated. Gel analysis of the proteins synthesized in vivo by embryos demonstrates that the pattern of synthesis of the histone proteins reflects the changing ratios of the histone mRNAs.


1988 ◽  
Vol 8 (10) ◽  
pp. 4425-4432 ◽  
Author(s):  
L D Ingham ◽  
F C Davis

A Urechis caupo histone gene tandem repeat has been isolated from a 5.0-kilobase EcoRI genomic library in lambda gtWES.lambda B. Genomic reconstruction experiments indicate that the cloned sequence is repeated approximately 100 times per haploid genome. Unique restriction fragments from the cloned sequence hybridize with individual core histone genes from a histone gene tandem repeat of the sea urchin, Strongylocentrotus purpuratus. No hybridization is detected when restriction digests are probed with a sea urchin H1 histone gene. Hybrid selection and in vitro translation of embryo mRNAs demonstrate that the clone contains sequences complementary to all four core histones; however, no H1 histone is detected among the translation products. Based on a restriction site map of the clone and the subcloned sequences which hybridize to the histone mRNAs, the order of the core histone genes in the clone is shown to be H3 H2A H2B H4. S1 nuclease hybrid protection mapping is used to locate the coding regions and to determine the transcript lengths of the core histone mRNAs. The transcript lengths of H2A, H2B, H3, and H4 mRNAs are approximately 464, 438, 494, and 397 bases, respectively. The S1 nuclease mapping also demonstrates that H2A and H4 are transcribed from one DNA strand while H2B and H3 are transcribed from the other strand. In the tandem repeat, the genes are organized so that transcription of the H2A-H2B and H3-H4 gene pairs is divergent.


Genetics ◽  
2002 ◽  
Vol 162 (4) ◽  
pp. 1557-1571 ◽  
Author(s):  
Tim Formosa ◽  
Susan Ruone ◽  
Melissa D Adams ◽  
Aileen E Olsen ◽  
Peter Eriksson ◽  
...  

AbstractSpt16/Cdc68, Pob3, and Nhp6 collaborate in vitro and in vivo as the yeast factor SPN, which is homologous to human FACT. SPN/FACT complexes mediate passage of polymerases through nucleosomes and are important for both transcription and replication. An spt16 mutation was found to be intolerable when combined with a mutation in any member of the set of functionally related genes HIR1, HIR2/SPT1, HIR3/HPC1, or HPC2. Mutations in POB3, but not in NHP6A/B, also display strong synthetic defects with hir/hpc mutations. A screen for other mutations that cause dependence on HIR/HPC genes revealed genes encoding members of the Paf1 complex, which also promotes transcriptional elongation. The Hir/Hpc proteins affect the expression of histone genes and also promote normal deposition of nucleosomes; either role could explain an interaction with elongation factors. We show that both spt16 and pob3 mutants respond to changes in histone gene numbers, but in opposite ways, suggesting that Spt16 and Pob3 each interact with histones but perhaps with different subsets of these proteins. Supporting this, spt16 and pob3 mutants also display different sensitivities to mutations in the N-terminal tails of histones H3 and H4 and to mutations in enzymes that modulate acetylation of these tails. Our results support a model in which SPN/FACT has two functions: it disrupts nucleosomes to allow polymerases to access DNA, and it reassembles the nucleosomes afterward. Mutations that impair the reassembly activity cause chromatin to accumulate in an abnormally disrupted state, imposing a requirement for a nucleosome reassembly function that we propose is provided by Hir/Hpc proteins.


1983 ◽  
Vol 3 (6) ◽  
pp. 974-981
Author(s):  
E J Baker ◽  
A A Infante

The relative cytoplasmic accumulation of the individual histone mRNAs in sea urchins was determined by gel analysis of 3H-labeled cytoplasmic RNA isolated from embryos of the early cleavage through the mesenchyme blastula stages. A number of separate determinations showed that H1 mRNA accumulates at a molar ratio of 0.5 or less compared with each of the H2 or H3 core histone mRNAs through approximately the first 12 h of embryonic development. After this time, the accumulation of H1 mRNA increases relative to the core histone mRNAs, and approximately equimolar amounts of the histone mRNAs are produced by about the 14-h stage. The equimolar synthesis of H1 mRNA appears to be transient, returning to 0.5-molar levels several hours later. The increase in H1 mRNA accumulation, relative to the core histone RNAs, is coincident with the transition from expression of the early (alpha) sea urchin histone gene set to the late histone genes. Since all five of the early histone genes occur in a 1:1 ratio within repeating units, the data suggest that the genes within a single repeat, or their immediate products, are individually regulated. Gel analysis of the proteins synthesized in vivo by embryos demonstrates that the pattern of synthesis of the histone proteins reflects the changing ratios of the histone mRNAs.


1988 ◽  
Vol 8 (10) ◽  
pp. 4425-4432
Author(s):  
L D Ingham ◽  
F C Davis

A Urechis caupo histone gene tandem repeat has been isolated from a 5.0-kilobase EcoRI genomic library in lambda gtWES.lambda B. Genomic reconstruction experiments indicate that the cloned sequence is repeated approximately 100 times per haploid genome. Unique restriction fragments from the cloned sequence hybridize with individual core histone genes from a histone gene tandem repeat of the sea urchin, Strongylocentrotus purpuratus. No hybridization is detected when restriction digests are probed with a sea urchin H1 histone gene. Hybrid selection and in vitro translation of embryo mRNAs demonstrate that the clone contains sequences complementary to all four core histones; however, no H1 histone is detected among the translation products. Based on a restriction site map of the clone and the subcloned sequences which hybridize to the histone mRNAs, the order of the core histone genes in the clone is shown to be H3 H2A H2B H4. S1 nuclease hybrid protection mapping is used to locate the coding regions and to determine the transcript lengths of the core histone mRNAs. The transcript lengths of H2A, H2B, H3, and H4 mRNAs are approximately 464, 438, 494, and 397 bases, respectively. The S1 nuclease mapping also demonstrates that H2A and H4 are transcribed from one DNA strand while H2B and H3 are transcribed from the other strand. In the tandem repeat, the genes are organized so that transcription of the H2A-H2B and H3-H4 gene pairs is divergent.


2021 ◽  
pp. mbc.E20-10-0645
Author(s):  
James P. Kemp ◽  
Xiao-Cui Yang ◽  
Zbigniew Dominski ◽  
William F. Marzluff ◽  
Robert J. Duronio

The Histone Locus Body (HLB) is an evolutionarily conserved nuclear body that regulates the transcription and processing of replication-dependent (RD) histone mRNAs, which are the only eukaryotic mRNAs lacking a poly-A tail. Many nuclear bodies contain distinct domains, but how internal organization is related to nuclear body function is not fully understood. Here, we demonstrate using structured illumination microscopy that Drosophila HLBs have a “core-shell” organization in which the internal core contains transcriptionally active RD histone genes. The N-terminus of Mxc, which contains a domain required for Mxc oligomerization, HLB assembly, and RD histone gene expression, is enriched in the HLB core. In contrast, the C-terminus of Mxc is enriched in the HLB outer shell as is FLASH, a component of the active U7 snRNP that co-transcriptionally cleaves RD histone pre-mRNA. Consistent with these results, we show biochemically that FLASH binds directly to the Mxc C-terminal region. In the rapid S-M nuclear cycles of syncytial blastoderm Drosophila embryos, the HLB disassembles at mitosis and reassembles the core-shell arrangement as histone gene transcription is activated immediately after mitosis. Thus, the core-shell organization is coupled to zygotic histone gene transcription, revealing a link between HLB internal organization and RD histone gene expression.


1992 ◽  
Vol 12 (6) ◽  
pp. 2690-2700 ◽  
Author(s):  
M A Huie ◽  
E W Scott ◽  
C M Drazinic ◽  
M C Lopez ◽  
I K Hornstra ◽  
...  

GCR1 gene function is required for high-level glycolytic gene expression in Saccharomyces cerevisiae. Recently, we suggested that the CTTCC sequence motif found in front of many genes encoding glycolytic enzymes lay at the core of the GCR1-binding site. Here we mapped the DNA-binding domain of GCR1 to the carboxy-terminal 154 amino acids of the polypeptide. DNase I protection studies showed that a hybrid MBP-GCR1 fusion protein protected a region of the upstream activating sequence of TPI (UASTPI), which harbored the CTTCC sequence motif, and suggested that the fusion protein might also interact with a region of the UAS that contained the related sequence CATCC. A series of in vivo G methylation protection experiments of the native TPI promoter were carried out with wild-type and gcr1 deletion mutant strains. The G doublets that correspond to the C doublets in each site were protected in the wild-type strain but not in the gcr1 mutant strain. These data demonstrate that the UAS of TPI contains two GCR1-binding sites which are occupied in vivo. Furthermore, adjacent RAP1/GRF1/TUF- and REB1/GRF2/QBP/Y-binding sites in UASTPI were occupied in the backgrounds of both strains. In addition, DNA band-shift assays were used to show that the MBP-GCR1 fusion protein was able to form nucleoprotein complexes with oligonucleotides that contained CTTCC sequence elements found in front of other glycolytic genes, namely, PGK, ENO1, PYK, and ADH1, all of which are dependent on GCR1 gene function for full expression. However, we were unable to detect specific interactions with CTTCC sequence elements found in front of the translational component genes TEF1, TEF2, and CRY1. Taken together, these experiments have allowed us to propose a consensus GCR1-binding site which is 5'-(T/A)N(T/C)N(G/A)NC(T/A)TCC(T/A)N(T/A)(T/A)(T/G)-3'.


2014 ◽  
Vol 171 (13) ◽  
pp. 1149-1156 ◽  
Author(s):  
Annelies Delporte ◽  
Winnok H. De Vos ◽  
Els J.M. Van Damme

1995 ◽  
Vol 15 (7) ◽  
pp. 3587-3596 ◽  
Author(s):  
H M el-Hodiri ◽  
M Perry

The H2A and H2B genes of the Xenopus xlh3 histone gene cluster are transcribed in opposite directions from initiation points located approximately 235 bp apart. The close proximity of these genes to one another suggests that their expression may be controlled by either a single bidirectional promoter or by separate promoters. Our analysis of the transcription of histone gene pairs containing deletions and site-specific mutations of intergenic DNA revealed that both promoters are distinct but that they overlap physically and share multiple regulatory elements, providing a possible basis for the coordinate regulation of their in vivo activities. Using the intergenic DNA fragment as a probe and extracts from mammalian and amphibian cells, we observed the formation of a specific complex containing the CCAAT displacement protein (CDP). The formation of the CDP-containing complex was not strictly dependent on any single element in the intergenic region but instead required the presence of at least two of the three CCAAT motifs. Interestingly, similar CDP-containing complexes were formed on the promoters from the three other histone genes. The binding of CDP to histone gene promoters may contribute to the coordination of their activities during the cell cycle and early development.


Sign in / Sign up

Export Citation Format

Share Document