Individual regulation of the accumulation of H1 mRNA and core histone mRNAs in sea urchin embryos

1983 ◽  
Vol 3 (6) ◽  
pp. 974-981
Author(s):  
E J Baker ◽  
A A Infante

The relative cytoplasmic accumulation of the individual histone mRNAs in sea urchins was determined by gel analysis of 3H-labeled cytoplasmic RNA isolated from embryos of the early cleavage through the mesenchyme blastula stages. A number of separate determinations showed that H1 mRNA accumulates at a molar ratio of 0.5 or less compared with each of the H2 or H3 core histone mRNAs through approximately the first 12 h of embryonic development. After this time, the accumulation of H1 mRNA increases relative to the core histone mRNAs, and approximately equimolar amounts of the histone mRNAs are produced by about the 14-h stage. The equimolar synthesis of H1 mRNA appears to be transient, returning to 0.5-molar levels several hours later. The increase in H1 mRNA accumulation, relative to the core histone RNAs, is coincident with the transition from expression of the early (alpha) sea urchin histone gene set to the late histone genes. Since all five of the early histone genes occur in a 1:1 ratio within repeating units, the data suggest that the genes within a single repeat, or their immediate products, are individually regulated. Gel analysis of the proteins synthesized in vivo by embryos demonstrates that the pattern of synthesis of the histone proteins reflects the changing ratios of the histone mRNAs.

1983 ◽  
Vol 3 (6) ◽  
pp. 974-981 ◽  
Author(s):  
E J Baker ◽  
A A Infante

The relative cytoplasmic accumulation of the individual histone mRNAs in sea urchins was determined by gel analysis of 3H-labeled cytoplasmic RNA isolated from embryos of the early cleavage through the mesenchyme blastula stages. A number of separate determinations showed that H1 mRNA accumulates at a molar ratio of 0.5 or less compared with each of the H2 or H3 core histone mRNAs through approximately the first 12 h of embryonic development. After this time, the accumulation of H1 mRNA increases relative to the core histone mRNAs, and approximately equimolar amounts of the histone mRNAs are produced by about the 14-h stage. The equimolar synthesis of H1 mRNA appears to be transient, returning to 0.5-molar levels several hours later. The increase in H1 mRNA accumulation, relative to the core histone RNAs, is coincident with the transition from expression of the early (alpha) sea urchin histone gene set to the late histone genes. Since all five of the early histone genes occur in a 1:1 ratio within repeating units, the data suggest that the genes within a single repeat, or their immediate products, are individually regulated. Gel analysis of the proteins synthesized in vivo by embryos demonstrates that the pattern of synthesis of the histone proteins reflects the changing ratios of the histone mRNAs.


1988 ◽  
Vol 8 (10) ◽  
pp. 4425-4432 ◽  
Author(s):  
L D Ingham ◽  
F C Davis

A Urechis caupo histone gene tandem repeat has been isolated from a 5.0-kilobase EcoRI genomic library in lambda gtWES.lambda B. Genomic reconstruction experiments indicate that the cloned sequence is repeated approximately 100 times per haploid genome. Unique restriction fragments from the cloned sequence hybridize with individual core histone genes from a histone gene tandem repeat of the sea urchin, Strongylocentrotus purpuratus. No hybridization is detected when restriction digests are probed with a sea urchin H1 histone gene. Hybrid selection and in vitro translation of embryo mRNAs demonstrate that the clone contains sequences complementary to all four core histones; however, no H1 histone is detected among the translation products. Based on a restriction site map of the clone and the subcloned sequences which hybridize to the histone mRNAs, the order of the core histone genes in the clone is shown to be H3 H2A H2B H4. S1 nuclease hybrid protection mapping is used to locate the coding regions and to determine the transcript lengths of the core histone mRNAs. The transcript lengths of H2A, H2B, H3, and H4 mRNAs are approximately 464, 438, 494, and 397 bases, respectively. The S1 nuclease mapping also demonstrates that H2A and H4 are transcribed from one DNA strand while H2B and H3 are transcribed from the other strand. In the tandem repeat, the genes are organized so that transcription of the H2A-H2B and H3-H4 gene pairs is divergent.


1988 ◽  
Vol 8 (10) ◽  
pp. 4425-4432
Author(s):  
L D Ingham ◽  
F C Davis

A Urechis caupo histone gene tandem repeat has been isolated from a 5.0-kilobase EcoRI genomic library in lambda gtWES.lambda B. Genomic reconstruction experiments indicate that the cloned sequence is repeated approximately 100 times per haploid genome. Unique restriction fragments from the cloned sequence hybridize with individual core histone genes from a histone gene tandem repeat of the sea urchin, Strongylocentrotus purpuratus. No hybridization is detected when restriction digests are probed with a sea urchin H1 histone gene. Hybrid selection and in vitro translation of embryo mRNAs demonstrate that the clone contains sequences complementary to all four core histones; however, no H1 histone is detected among the translation products. Based on a restriction site map of the clone and the subcloned sequences which hybridize to the histone mRNAs, the order of the core histone genes in the clone is shown to be H3 H2A H2B H4. S1 nuclease hybrid protection mapping is used to locate the coding regions and to determine the transcript lengths of the core histone mRNAs. The transcript lengths of H2A, H2B, H3, and H4 mRNAs are approximately 464, 438, 494, and 397 bases, respectively. The S1 nuclease mapping also demonstrates that H2A and H4 are transcribed from one DNA strand while H2B and H3 are transcribed from the other strand. In the tandem repeat, the genes are organized so that transcription of the H2A-H2B and H3-H4 gene pairs is divergent.


2005 ◽  
Vol 25 (20) ◽  
pp. 9127-9137 ◽  
Author(s):  
Peter R. Eriksson ◽  
Geetu Mendiratta ◽  
Neil B. McLaughlin ◽  
Tyra G. Wolfsberg ◽  
Leonardo Mariño-Ramírez ◽  
...  

ABSTRACT The yeast SPT10 gene encodes a putative histone acetyltransferase (HAT) implicated as a global transcription regulator acting through basal promoters. Here we address the mechanism of this global regulation. Although microarray analysis confirmed that Spt10p is a global regulator, Spt10p was not detected at any of the most strongly affected genes in vivo. In contrast, the presence of Spt10p at the core histone gene promoters in vivo was confirmed. Since Spt10p activates the core histone genes, a shortage of histones could occur in spt10Δ cells, resulting in defective chromatin structure and a consequent activation of basal promoters. Consistent with this hypothesis, the spt10Δ phenotype can be rescued by extra copies of the histone genes and chromatin is poorly assembled in spt10Δ cells, as shown by irregular nucleosome spacing and reduced negative supercoiling of the endogenous 2μm plasmid. Furthermore, Spt10p binds specifically and highly cooperatively to pairs of upstream activating sequence elements in the core histone promoters [consensus sequence, (G/A)TTCCN6TTCNC], consistent with a direct role in histone gene regulation. No other high-affinity sites are predicted in the yeast genome. Thus, Spt10p is a sequence-specific activator of the histone genes, possessing a DNA-binding domain fused to a likely HAT domain.


2014 ◽  
Vol 171 (13) ◽  
pp. 1149-1156 ◽  
Author(s):  
Annelies Delporte ◽  
Winnok H. De Vos ◽  
Els J.M. Van Damme

1983 ◽  
Vol 3 (4) ◽  
pp. 539-550 ◽  
Author(s):  
N Heintz ◽  
H L Sive ◽  
R G Roeder

We have analyzed the kinetics of accumulation of each of the individual core histone mRNAs throughout the HeLa cell cycle in cells synchronized by sequential thymidine and aphidicolin treatments. These analyses showed that during the S phase there was a 15-fold increase in the levels of histone mRNAs and that this resulted from both an increased rate of synthesis and a lengthening of the half-life of histone mRNAs. A comparison of the kinetics of accumulation of histone mRNA in the total cellular and nuclear RNA populations suggested an increased transcription rate through the S phase. Within 30 min after the inhibition of DNA synthesis in mid-S phase, the steady-state concentration and the rate of synthesis of histone mRNA each declined to their non-S-phase levels. Reactivation of histone mRNA accumulation could occur even after an extended mid-S-phase block in DNA synthesis. These results suggest that the mechanisms responsible for histone mRNA synthesis are not restricted to the G1/S boundary of the HeLa cell cycle, but can operate whenever DNA synthesis is occurring.


1990 ◽  
Vol 222 (2-3) ◽  
pp. 416-424 ◽  
Author(s):  
Ann Ehinger ◽  
Steven H. Denison ◽  
Gregory S. May

1990 ◽  
Vol 97 (2) ◽  
pp. 373-383
Author(s):  
M.E. Fini ◽  
M.T. Girard

We have examined the pattern of expression of four different matrix metalloproteinases (MMPs), collagenase, stromelysin, 92 kD gelatinase, and 72 kD gelatinase, by primary and passaged cultures of rabbit corneal fibroblasts. Primary cultures of this cell type have previously been shown to reproduce the normal tissue regulation of collagenase expression. We demonstrate qualitative and quantitative changes in the pattern of MMP expression as the cells are passaged in culture. Only a single MMP, 72 kD gelatinase, is constitutively expressed by primary fibroblast cultures. Phorbol myristate acetate (PMA) treatment upregulates expression of 72 kD gelatinase and turns on the expression of collagenase and stromelysin, as well as 92 kD gelatinase. However, the degree to which MMP expression is induced is minimal. Cells subcultured but a single time constitutively produce not only 72 kD gelatinase, but also collagenase and stromelysin. In addition, PMA treatment upregulates expression of collagenase, stromelysin and 92 kD gelatinase to high levels. In contrast, the expression of 72 kD gelatinase is repressed by treatment of passaged cell cultures with PMA. Our data indicate that the cell does not simply turn the MMP genes on or off, as a group, in response to various agents, but that it has the capacity for fine control over which MMPs are expressed and the degree to which each is expressed. Changes in MMP protein expression induced by PMA treatment are correlated with changes in specific mRNA levels in passaged cultures. The kinetics of mRNA accumulation suggest that the MMP genes can respond to multiple intracellular signals initiated in a temporal cascade by PMA. It is the combined effects of the individual signals on the accumulation of specific mRNAs that must determine the ultimate pattern of MMP protein expression. The distinct patterns of MMP expression produced by primary and passaged cell cultures may be analogous to patterns of expression that might occur under particular in vivo conditions.


Sign in / Sign up

Export Citation Format

Share Document