scholarly journals Developmental programs of human erythroleukemia cells: globin gene expression and methylation.

1988 ◽  
Vol 8 (11) ◽  
pp. 4917-4926 ◽  
Author(s):  
T Enver ◽  
J W Zhang ◽  
N P Anagnou ◽  
G Stamatoyannopoulos ◽  
T Papayannopoulou

We investigated the programs of globin gene expression in three known (K562, HEL, and KMOE) and three novel (OCI-M1, OCI-M2, and HEL-R) human erythroleukemic cell lines of adult origin. RNAs from induced and uninduced cells were analyzed for epsilon-, gamma-, delta-, and beta-, zeta-globin-specific transcripts. While high-level gamma-globin expression was common, the lines differed in their expression of embryonic (epsilon, zeta) and adult (delta, beta) globin mRNAs. The patterns of globin gene methylation were generally consistent with their observed expression profiles, with many of the same correlations being seen in normal cells. Although the programs of globin gene expression and methylation displayed by the lines appeared to be diverse, they were not random; rather, they made developmental sense, mimicking defined globin gene programs observed during normal human development. The characteristics exhibited by several of these lines suggest that they may have been derived from the transformation of multi- or oligopotent hematopoietic progenitor cells. We speculate that the expression of fetal or embryonic globins in these adult erythroleukemic cell lines is not an aberration of neoplastic transformation but is indicative of a fetal or embryonic potential in normal adult hematopoietic progenitors.

1988 ◽  
Vol 8 (11) ◽  
pp. 4917-4926
Author(s):  
T Enver ◽  
J W Zhang ◽  
N P Anagnou ◽  
G Stamatoyannopoulos ◽  
T Papayannopoulou

We investigated the programs of globin gene expression in three known (K562, HEL, and KMOE) and three novel (OCI-M1, OCI-M2, and HEL-R) human erythroleukemic cell lines of adult origin. RNAs from induced and uninduced cells were analyzed for epsilon-, gamma-, delta-, and beta-, zeta-globin-specific transcripts. While high-level gamma-globin expression was common, the lines differed in their expression of embryonic (epsilon, zeta) and adult (delta, beta) globin mRNAs. The patterns of globin gene methylation were generally consistent with their observed expression profiles, with many of the same correlations being seen in normal cells. Although the programs of globin gene expression and methylation displayed by the lines appeared to be diverse, they were not random; rather, they made developmental sense, mimicking defined globin gene programs observed during normal human development. The characteristics exhibited by several of these lines suggest that they may have been derived from the transformation of multi- or oligopotent hematopoietic progenitor cells. We speculate that the expression of fetal or embryonic globins in these adult erythroleukemic cell lines is not an aberration of neoplastic transformation but is indicative of a fetal or embryonic potential in normal adult hematopoietic progenitors.


Blood ◽  
1993 ◽  
Vol 82 (5) ◽  
pp. 1666-1671
Author(s):  
JA Sharpe ◽  
RJ Summerhill ◽  
P Vyas ◽  
G Gourdon ◽  
DR Higgs ◽  
...  

Erythroid-specific DNase 1 hypersensitive sites have been identified at the promoters of the human alpha-like genes and within the region from 4 to 40 kb upstream of the gene cluster. One of these sites, HS-40, has been shown previously to be the major regulator of tissue-specific alpha-globin gene expression. We have now examined the function of other hypersensitive sites by studying the expression in mouse erythroleukemia (MEL) cells of various fragments containing these sites attached to HS-40 and an alpha-globin gene. High level expression of the alpha gene was observed in all cases. When clones of MEL cells bearing a single copy of the alpha-globin gene fragments were examined, expression levels were similar to those of the endogenous mouse alpha genes and similar to MEL cells bearing beta gene constructs under the control of the beta-globin locus control region. However, there was no evidence that the additional hypersensitive sites increased the level of expression or conferred copy number dependence on the expression of a linked alpha gene in MEL cells.


1993 ◽  
Vol 13 (8) ◽  
pp. 4836-4843
Author(s):  
K R Peterson ◽  
G Stamatoyannopoulos

To determine the effect of gene order on globin gene developmental regulation, we produced transgenic mice containing two tandemly arranged gamma- or beta-globin or gamma beta- and beta gamma-globin genes linked to a 2.5-kb cassette containing sequences of the locus control region (LCR). Analysis of constructs containing two identical gamma or beta genes assessed the effect of gene order on globin gene expression, while analysis of constructs containing tandemly arranged gamma and beta genes assessed any additional effects of the trans-acting environment. When two gamma genes were tandemly linked to the LCR, expression from the proximal gamma gene was three- to fourfold higher than expression from the distal gamma gene, and the ratio of proximal to distal gene expression remained unchanged throughout development. Similarly, when two beta genes were tandemly linked to the LCR, the proximal beta gene was predominantly expressed throughout development. These results indicate that proximity to LCR increases gene expression, perhaps by influencing the frequency of interaction between the LCR and globin gene promoters. An arrangement where the gamma gene was proximal and the beta gene distal to the LCR resulted in predominant gamma-gene expression in the embryo. When the order was reversed and the gamma gene was placed distally to the LCR, gamma-gene expression in the embryo was still up to threefold higher than expression of the LCR-proximal beta gene. These findings suggest that the embryonic trans-acting environment interacts preferentially with the gamma genes irrespective of their order or proximity to the LCR. We conclude that promoter competition rather than gene order plays the major role in globin gene switching.


Blood ◽  
1996 ◽  
Vol 87 (4) ◽  
pp. 1604-1611 ◽  
Author(s):  
ZH Lu ◽  
MH Steinberg

Very different fetal hemoglobin levels among adult sickle cell anemia patients suggest genetic modulation of gamma-globin gene expression. In sickle cell anemia, different fetal hemoglobin levels are associated with distinct beta-globin gene haplotypes. Haplotype may be a marker for linked DNA that modulates gamma-globin gene expression. From 295 individuals with sickle cell anemia, we chose for detailed studies 53 patients who had the highest or the lowest fetal hemoglobin levels and 7 patients whose fetal hemoglobin levels were atypical of their haplotype. In these individuals, we examined portions of the beta- globin gene locus control region hypersensitive sites two and three, an (AT)x(T)y repeat 5′ to the beta-globin gene, a 4-bp deletion 5 to the A gamma T gene, promoters of both gamma-globin genes, 5′ flanking region of the G gamma-globin gene, and A gamma-globin gene IVS-II. Of the regions we studied all polymorphisms were always haplotype-linked and no additional mutations were present. This suggested that variations in these areas are uncommon mechanisms of fetal hemoglobin modulation in sickle cell anemia. Whereas unexamined cis-acting sequences may regulate gamma-globin gene transcription, trans-acting factors may play a more important role.


1992 ◽  
Vol 12 (4) ◽  
pp. 1561-1567 ◽  
Author(s):  
J A Lloyd ◽  
J M Krakowsky ◽  
S C Crable ◽  
J B Lingrel

The developmental regulation of the human globin genes involves a key switch from fetal (gamma-) to adult (beta-) globin gene expression. It is possible to study the mechanism of this switch by expressing the human globin genes in transgenic mice. Previous work has shown that high-level expression of the human globin genes in transgenic mice requires the presence of the locus control region (LCR) upstream of the genes in the beta-globin locus. High-level, correct developmental regulation of beta-globin gene expression in transgenic mice has previously been accomplished only in 30- to 40-kb genomic constructs containing the LCR and multiple genes from the locus. This suggests that either competition for LCR sequences by other globin genes or the presence of intergenic sequences from the beta-globin locus is required to silence the beta-globin gene in embryonic life. The results presented here clearly show that the presence of the gamma-globin gene (3.3 kb) alone is sufficient to down-regulate the beta-globin gene in embryonic transgenic mice made with an LCR-gamma-beta-globin mini construct. The results also show that the gamma-globin gene is down-regulated in adult mice from most transgenic lines made with LCR-gamma-globin constructs not including the beta-globin gene, i.e., that the gamma-globin gene can be autonomously regulated. Evidence presented here suggests that a region 3' of the gamma-globin gene may be important for down-regulation in the adult. The 5'HS2 gamma en beta construct described is a suitable model for further study of the mechanism of human gamma- to beta-globin gene switching in transgenic mice.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 374-374 ◽  
Author(s):  
Patricia A. Oneal ◽  
Joseph D. Schwartz ◽  
Nicole Gantt ◽  
Natarajan Bhanu ◽  
Y. Terry Lee ◽  
...  

Abstract Although the genetic processes responsible for gamma-globin gene and protein silencing are not known, the prevailing model is that gamma-globin silencing results from a gradual change within a single hematopoietic cell lineage that is governed by intrinsic properties of the cells. In order to provide a more complete characterization of the silencing phenomenon, we studied globin expression patterns directly from clinical samples using single-cell, quantitative PCR, and globin protein phenotyping. We collected blood samples from untransfused donors: umbilical cords (n=3), infants (n=11; ages 1 day to 35 months), and adults (n=3). All samples were maintained at 4°C and analyzed within 72 hours. Flow cytometry (30,000 cells per donor) and HPLC analyses were used for globin protein phenotyping. For globin gene expression, we identified reticulocytes using a strategy that required no membrane permeabilization, and sorted them as single cells directly into lysis buffer. Oligo-dT reverse transcription of mRNA was followed by real-time PCR quantitation. Globin cDNA copy numbers were calculated using standard curves from serial dilutions of a plasmid DNA. We analyzed approximately 1000 single-cell quantitative PCR amplifications for gamma- and beta-globin gene expression. In cord blood, we detected both gamma- and beta-globin gene expression in 97.4% (112/115) of the reticulocytes. The average gamma-globin cDNA copy number was 1870±1390 copies, compared with an average beta-globin cDNA copy number of 2181±2138 copies per reticulocyte. HbF and HbA were also detected in >95% of the cord blood erythrocytes. In the adult samples, HbF was detected in <5% of the circulating erythrocytes and gamma-globin gene expression in only 1.5% (3/206) of the reticulocytes. The average gamma-globin cDNA copy number in the minor population of gamma(+) adult reticulocytes was 468±198 copies, and the average beta-globin cDNA copy number in the beta(+) adult reticulocytes was 3869±3733 copies. Compared with the relatively monotonous patterns of gamma-globin gene and protein expression in cord and adult blood, we clearly detected an age-based fluctuation between those patterns in the infant blood samples. During the first three years of life, a gradual loss in the level of gamma-globin gene and protein expression was identified among the gamma(+)beta(+) reticulocytes and the HbF(+)HbA(+) erythrocytes. In addition, discrete populations of gamma(−)beta(+)reticulocytes and HbF(−)HbA(+) erythrocytes were detected. Rapid expansion of those gamma-silenced populations became apparent soon after birth. Within four months, the proportion of gamma-silenced cells eclipsed that of the gamma(+)beta(+) cells to become the predominant population. By three years after birth, the two cell populations essentially merged to become a single, gamma-silenced population similar to that found in adults. These data suggest two cellular mechanisms for gamma-globin silencing in humans: 1) a gradual loss in gamma-globin expression in the gamma(+)beta(+) cells beginning prior to delivery and continuing during infancy, and 2) replacement of the gamma(+)beta(+) cells with a population of gamma-silenced cells that rapidly accumulate after birth, possibly in response to the dramatic increase in oxygenation or other environmental changes.


1993 ◽  
Vol 13 (8) ◽  
pp. 4836-4843 ◽  
Author(s):  
K R Peterson ◽  
G Stamatoyannopoulos

To determine the effect of gene order on globin gene developmental regulation, we produced transgenic mice containing two tandemly arranged gamma- or beta-globin or gamma beta- and beta gamma-globin genes linked to a 2.5-kb cassette containing sequences of the locus control region (LCR). Analysis of constructs containing two identical gamma or beta genes assessed the effect of gene order on globin gene expression, while analysis of constructs containing tandemly arranged gamma and beta genes assessed any additional effects of the trans-acting environment. When two gamma genes were tandemly linked to the LCR, expression from the proximal gamma gene was three- to fourfold higher than expression from the distal gamma gene, and the ratio of proximal to distal gene expression remained unchanged throughout development. Similarly, when two beta genes were tandemly linked to the LCR, the proximal beta gene was predominantly expressed throughout development. These results indicate that proximity to LCR increases gene expression, perhaps by influencing the frequency of interaction between the LCR and globin gene promoters. An arrangement where the gamma gene was proximal and the beta gene distal to the LCR resulted in predominant gamma-gene expression in the embryo. When the order was reversed and the gamma gene was placed distally to the LCR, gamma-gene expression in the embryo was still up to threefold higher than expression of the LCR-proximal beta gene. These findings suggest that the embryonic trans-acting environment interacts preferentially with the gamma genes irrespective of their order or proximity to the LCR. We conclude that promoter competition rather than gene order plays the major role in globin gene switching.


1992 ◽  
Vol 12 (4) ◽  
pp. 1561-1567
Author(s):  
J A Lloyd ◽  
J M Krakowsky ◽  
S C Crable ◽  
J B Lingrel

The developmental regulation of the human globin genes involves a key switch from fetal (gamma-) to adult (beta-) globin gene expression. It is possible to study the mechanism of this switch by expressing the human globin genes in transgenic mice. Previous work has shown that high-level expression of the human globin genes in transgenic mice requires the presence of the locus control region (LCR) upstream of the genes in the beta-globin locus. High-level, correct developmental regulation of beta-globin gene expression in transgenic mice has previously been accomplished only in 30- to 40-kb genomic constructs containing the LCR and multiple genes from the locus. This suggests that either competition for LCR sequences by other globin genes or the presence of intergenic sequences from the beta-globin locus is required to silence the beta-globin gene in embryonic life. The results presented here clearly show that the presence of the gamma-globin gene (3.3 kb) alone is sufficient to down-regulate the beta-globin gene in embryonic transgenic mice made with an LCR-gamma-beta-globin mini construct. The results also show that the gamma-globin gene is down-regulated in adult mice from most transgenic lines made with LCR-gamma-globin constructs not including the beta-globin gene, i.e., that the gamma-globin gene can be autonomously regulated. Evidence presented here suggests that a region 3' of the gamma-globin gene may be important for down-regulation in the adult. The 5'HS2 gamma en beta construct described is a suitable model for further study of the mechanism of human gamma- to beta-globin gene switching in transgenic mice.


1999 ◽  
Vol 18 (4) ◽  
pp. 293-303 ◽  
Author(s):  
Thanh Giang Sargent ◽  
Arlene M. Buller ◽  
David T. Teachey ◽  
Kimberly S. Mccanna ◽  
Joyce A. Lloyd

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3632-3632
Author(s):  
Benjamin L. Ebert ◽  
Raymond Mak ◽  
Jennifer L. Pretz ◽  
David Peck ◽  
Stephen Haggerty ◽  
...  

Abstract Several lines of evidence indicate that the pharmacological activation of fetal hemoglobin is an effective therapy for sickle cell anemia and beta thalassemia, but novel treatments for these diseases are needed. We developed and validated a high throughput assay to detect differential regulation of the globin genes and utilized this assay in a small molecule screen to identify novel compounds that increase the relative expression of gamma globin. In our assay, transcripts for the alpha, beta, delta, epsilon, gamma, theta, and zeta globin genes are amplified by multiplexed ligation-mediated PCR. Labeled amplicons are captured on different fluorescent microspheres using molecular barcodes, and the relative abundance of labeled amplicons is detected by high speed flow cytometry. To recapitulate the activity of compounds in the bone marrow of patients as accurately as possible, the screen was performed using primary human erythroid progenitor cells cultured in vitro. The assay was adapted to 384-well format with robotic liquid handling. In validation studies, the assay detected the expected increases in globin gene expression during erythroid differentiation, increased gamma globin expression in umbilical cord blood progenitor cells, and increased gamma globin expression in cells treated with known inducers of fetal hemoglobin including hydroxyurea and sodium butyrate. We screened a library of 1040 known bioactive compounds, 75% of which are FDA approved drugs, and a library of 600 compounds produced by diversity oriented synthesis that have been shown to inhibit histone deacetylase (HDAC) activity. In the screen, we rediscovered previously identified globin gene regulators, further validating our globin assay. For example, corticosteroids, known activators of fetal hemoglobin, increased the relative expression of gamma globin. Thyroid hormone specifically increased expression of delta globin, consistent with clinical observations that hemoglobin A2 levels are increased in hyperthyroidism and decreased in hypothyroidism. We identified ten novel compounds from the diversity oriented synthesis library that powerfully induce expression of the gamma globin gene relative to beta globin. Moreover, HDAC inhibition reversed the ontogeny of globin gene expression, coordinately increasing expression of fetal and embryonic relative to the adult globin genes. Relative to beta globin gene expression, gamma and epsilon globin were induced while delta globin was unaffected by HDAC inhibitors; relative to alpha globin expression, zeta globin was increased and theta globin was unaffected. The identification of compounds that differentially regulate globin gene expression may provide lead compounds for the development of novel therapies for sickle cell disease and beta thalassemia and may help elucidate the molecular events underlying switching of the globin genes during normal development.


Sign in / Sign up

Export Citation Format

Share Document