Chicken homolog of the mos proto-oncogene

1988 ◽  
Vol 8 (2) ◽  
pp. 923-929
Author(s):  
M Schmidt ◽  
M K Oskarsson ◽  
J K Dunn ◽  
D G Blair ◽  
S Hughes ◽  
...  

We compared the sequence and properties of the chicken mos homolog with the previously characterized mouse and human c-mos genes. Sequence analysis revealed one major open reading frame of 1,047 base pairs encoding a protein of 349 amino acids. Both the nucleotide sequence and the deduced amino acid sequence showed 62% overall homology to mouse and human c-mos, but regions of higher conservation (approximately 70%) occurred in the putative ATP-binding and kinase domains. We detected mos transcripts by Northern (RNA) analyses in RNA prepared from chicken and quail ovaries and testes. Evidence for low levels of mos RNA expression in adult chicken heart, kidney, and spleen and in the entire embryo was obtained by S1 nuclease protection experiments. In contrast to the low transforming efficiency of human c-mos when linked to a mouse retroviral long terminal repeat element, chicken c-mos transformed NIH 3T3 cells as efficiently as mouse c-mos did. We also show that chicken primary embryo fibroblasts were morphologically altered when infected with an avian retroviral vector containing the chicken c-mos coding region.

1988 ◽  
Vol 8 (2) ◽  
pp. 923-929 ◽  
Author(s):  
M Schmidt ◽  
M K Oskarsson ◽  
J K Dunn ◽  
D G Blair ◽  
S Hughes ◽  
...  

We compared the sequence and properties of the chicken mos homolog with the previously characterized mouse and human c-mos genes. Sequence analysis revealed one major open reading frame of 1,047 base pairs encoding a protein of 349 amino acids. Both the nucleotide sequence and the deduced amino acid sequence showed 62% overall homology to mouse and human c-mos, but regions of higher conservation (approximately 70%) occurred in the putative ATP-binding and kinase domains. We detected mos transcripts by Northern (RNA) analyses in RNA prepared from chicken and quail ovaries and testes. Evidence for low levels of mos RNA expression in adult chicken heart, kidney, and spleen and in the entire embryo was obtained by S1 nuclease protection experiments. In contrast to the low transforming efficiency of human c-mos when linked to a mouse retroviral long terminal repeat element, chicken c-mos transformed NIH 3T3 cells as efficiently as mouse c-mos did. We also show that chicken primary embryo fibroblasts were morphologically altered when infected with an avian retroviral vector containing the chicken c-mos coding region.


1986 ◽  
Vol 6 (5) ◽  
pp. 1706-1710 ◽  
Author(s):  
M Ruta ◽  
R Wolford ◽  
R Dhar ◽  
D Defeo-Jones ◽  
R W Ellis ◽  
...  

We present the nucleotide sequence of the coding region of the rat c-rasH-1 gene and a partial sequence analysis of the rat c-rasH-2 gene. By comparing these sequences with the Harvey murine sarcoma virus ras gene, we predict that the p21 protein encoded by the Harvey virus differs from the cellular c-rasH-1-encoded p21 at only two amino acids; those at positions 12 and 59. Alterations at each of these positions may play a role in activating the viral p21 protein. The c-rasH-2 gene is likely to be a nonfunctional pseudogene because it lacks introns, cannot be activated to transform NIH 3T3 cells, and differs in sequence from both c-rasH-1 and v-rasH at several base pair positions.


1985 ◽  
Vol 5 (1) ◽  
pp. 17-26
Author(s):  
L Naumovski ◽  
G Chu ◽  
P Berg ◽  
E C Friedberg

We determined the complete nucleotide sequence of the RAD3 gene of Saccharomyces cerevisiae. The coding region of the gene contained 2,334 base pairs that could encode a protein with a calculated molecular weight of 89,796. Analysis of RAD3 mRNA by Northern blots and by S1 nuclease mapping indicated that the transcript was approximately 2.5 kilobases and did not contain intervening sequences. Fusions between the RAD3 gene and the lac'Z gene of Escherichia coli were constructed and used to demonstrate that the RAD3 gene was not inducible by DNA damage caused by UV radiation or 4-nitroquinoline-1-oxide. Two UV-sensitive chromosomal mutant alleles of RAD3, rad3-1 and rad3-2, were rescued by gap repair of a centromeric plasmid, and their sequences were determined. The rad3-1 mutation changed a glutamic acid to lysine, and the rad3-2 mutation changed a glycine to arginine. Previous studies have shown that disruption of the RAD3 gene results in loss of an essential function and is associated with inviability of haploid cells. In the present experiments, plasmids carrying the rad3-1 and rad3-2 mutations were introduced into haploid cells containing a disrupted RAD3 gene. These plasmids expressed the essential function of RAD3 but not its DNA repair function. A 74-base-pair deletion at the 3' end of the RAD3 coding region or a fusion of this deletion to the E. coli lac'Z gene did not affect either function of RAD3.


1988 ◽  
Vol 8 (2) ◽  
pp. 704-712
Author(s):  
S Reddy ◽  
P Yaciuk ◽  
T E Kmiecik ◽  
P M Coussens ◽  
D Shalloway

Previous studies have shown that carboxyl-terminal mutation of pp60c-src can activate its transforming ability. Conflicting results have been reported for the transforming ability of pp60c-src mutants having only mutations outside its carboxyl-terminal region. To clarify the effects of such mutations, we tested the activities of chimeric v(amino)- and c(carboxyl)-src (v/c-src) proteins at different dosages in NIH 3T3 cells. The focus-forming activity of Rous sarcoma virus long terminal repeat (LTR)-src expression plasmids was significantly reduced when the v-src 3' coding region was replaced with the corresponding c-src region. This difference was masked when the Rous sarcoma virus LTR was replaced with the Moloney murine leukemia virus LTR, which induced approximately 20-fold more protein expression, but even focus-selected lines expressing v/c-src proteins were unable to form large colonies in soft agarose or tumors in NFS mice. This suggests that pp60c-src is not equally sensitive to mutations in its different domains and that there are at least two distinguishable levels of regulation, the dominant one being associated with its carboxyl terminus. v/c-src chimeric proteins expressed with either LTR had high in vitro specific kinase activity equal to that of pp60v-src but, in contrast, were phosphorylated at both Tyr-527 and Tyr-416. Total cell protein phosphotyrosine was enhanced in cells incompletely transformed by v/c-src proteins to the same extent as in v-src-transformed cells, suggesting that the carboxyl-terminal region may affect substrate specificity in a manner that is important for transformation.


1986 ◽  
Vol 6 (2) ◽  
pp. 347-354 ◽  
Author(s):  
A Schmidt ◽  
P Rossi ◽  
B de Crombrugghe

A chimeric gene was constructed in which sequences between 2,000 base pairs upstream of the start of transcription of the mouse alpha 2(I) collagen gene and 54 base pairs downstream of this site were fused to the chloramphenicol acetyltransferase (CAT) gene. We present evidence suggesting that this collagen gene segment is sufficient for cell-specific expression of the chimeric gene. Indeed, the levels of CAT activity in transient expression experiments were at least 10 times higher after transfection of NIH 3T3 cells than after transfection of a mouse myeloma cell line, whereas much less difference was found after transfection of these two cell types with pSV2-CAT, a plasmid in which the early simian virus 40 promoter is fused to the CAT gene. Several deletions were introduced in the same 5'-flanking segment of the alpha 2(I) collagen gene, and the effects of these deletions were examined after DNA transfection of the chimeric collagen-CAT gene into NIH 3T3 cells. At least two segments broadly located between -979 and -502 and between -346 and -104 are needed for optimal expression of the chimeric gene. These results were obtained both in transient expression experiments and by analysis of pools of NIH 3T3 cells that were stably transfected with the different mutants. In general, the effects of the deletions on the activity of the alpha 2(I) collagen promoter were analogous, whether the plasmids harbored the simian virus 40 enhancer sequence or not, although the overall levels of expression of the chimeric gene were increased when the recombinant plasmids contained this sequence.


1984 ◽  
Vol 4 (12) ◽  
pp. 2837-2842
Author(s):  
K A Krzywicki ◽  
M C Brandriss

The PUT2 gene, believed to encode delta 1-pyrroline-5-carboxylate dehydrogenase, has been completely sequenced. The DNA contains an open reading frame of 1,725 base pairs encoding a protein of 575 amino acids. Transcript mapping with both S1 nuclease and primer extension methods revealed numerous initiation sites of RNA synthesis 50 to 80 base pairs downstream from several TATA boxes. The deduced amino acid sequence of delta 1-pyrroline-5-carboxylate dehydrogenase contains a highly basic amino terminus that may serve as the signal sequence that targets this protein to the mitochondrion.


1985 ◽  
Vol 5 (1) ◽  
pp. 17-26 ◽  
Author(s):  
L Naumovski ◽  
G Chu ◽  
P Berg ◽  
E C Friedberg

We determined the complete nucleotide sequence of the RAD3 gene of Saccharomyces cerevisiae. The coding region of the gene contained 2,334 base pairs that could encode a protein with a calculated molecular weight of 89,796. Analysis of RAD3 mRNA by Northern blots and by S1 nuclease mapping indicated that the transcript was approximately 2.5 kilobases and did not contain intervening sequences. Fusions between the RAD3 gene and the lac'Z gene of Escherichia coli were constructed and used to demonstrate that the RAD3 gene was not inducible by DNA damage caused by UV radiation or 4-nitroquinoline-1-oxide. Two UV-sensitive chromosomal mutant alleles of RAD3, rad3-1 and rad3-2, were rescued by gap repair of a centromeric plasmid, and their sequences were determined. The rad3-1 mutation changed a glutamic acid to lysine, and the rad3-2 mutation changed a glycine to arginine. Previous studies have shown that disruption of the RAD3 gene results in loss of an essential function and is associated with inviability of haploid cells. In the present experiments, plasmids carrying the rad3-1 and rad3-2 mutations were introduced into haploid cells containing a disrupted RAD3 gene. These plasmids expressed the essential function of RAD3 but not its DNA repair function. A 74-base-pair deletion at the 3' end of the RAD3 coding region or a fusion of this deletion to the E. coli lac'Z gene did not affect either function of RAD3.


1986 ◽  
Vol 6 (2) ◽  
pp. 347-354
Author(s):  
A Schmidt ◽  
P Rossi ◽  
B de Crombrugghe

A chimeric gene was constructed in which sequences between 2,000 base pairs upstream of the start of transcription of the mouse alpha 2(I) collagen gene and 54 base pairs downstream of this site were fused to the chloramphenicol acetyltransferase (CAT) gene. We present evidence suggesting that this collagen gene segment is sufficient for cell-specific expression of the chimeric gene. Indeed, the levels of CAT activity in transient expression experiments were at least 10 times higher after transfection of NIH 3T3 cells than after transfection of a mouse myeloma cell line, whereas much less difference was found after transfection of these two cell types with pSV2-CAT, a plasmid in which the early simian virus 40 promoter is fused to the CAT gene. Several deletions were introduced in the same 5'-flanking segment of the alpha 2(I) collagen gene, and the effects of these deletions were examined after DNA transfection of the chimeric collagen-CAT gene into NIH 3T3 cells. At least two segments broadly located between -979 and -502 and between -346 and -104 are needed for optimal expression of the chimeric gene. These results were obtained both in transient expression experiments and by analysis of pools of NIH 3T3 cells that were stably transfected with the different mutants. In general, the effects of the deletions on the activity of the alpha 2(I) collagen promoter were analogous, whether the plasmids harbored the simian virus 40 enhancer sequence or not, although the overall levels of expression of the chimeric gene were increased when the recombinant plasmids contained this sequence.


1984 ◽  
Vol 4 (12) ◽  
pp. 2837-2842 ◽  
Author(s):  
K A Krzywicki ◽  
M C Brandriss

The PUT2 gene, believed to encode delta 1-pyrroline-5-carboxylate dehydrogenase, has been completely sequenced. The DNA contains an open reading frame of 1,725 base pairs encoding a protein of 575 amino acids. Transcript mapping with both S1 nuclease and primer extension methods revealed numerous initiation sites of RNA synthesis 50 to 80 base pairs downstream from several TATA boxes. The deduced amino acid sequence of delta 1-pyrroline-5-carboxylate dehydrogenase contains a highly basic amino terminus that may serve as the signal sequence that targets this protein to the mitochondrion.


1998 ◽  
Vol 72 (4) ◽  
pp. 2975-2982 ◽  
Author(s):  
Ronit Shtrichman ◽  
Tamar Kleinberger

ABSTRACT Adenovirus type 5 E4 open reading frame 4 (E4orf4) protein has been previously shown to counteract transactivation of the junBand c-fos genes by cyclic AMP plus E1A protein and to interact with protein phosphatase 2A (PP2A). Here, we show that the wild-type E4orf4 protein induces apoptosis in the E1A-expressing 293 cells, in NIH 3T3 cells transformed with v-Ras, and in the lung carcinoma cell line H1299. The induction of apoptosis is not accompanied by enhanced levels of p53 in 293 cells and occurs in the absence of p53 in H1299 cells, indicating involvement of a p53-independent pathway. A mutant E4orf4 protein that had lost the ability to induce apoptosis also lost its ability to bind PP2A. We suggest that E4orf4 antagonizes continuous signals to proliferate, like those given by E1A or v-Ras, and that the conflicting signals lead to the induction of cell death.


Sign in / Sign up

Export Citation Format

Share Document