Identification and sequence analysis of a new member of the mouse HSP70 gene family and characterization of its unique cellular and developmental pattern of expression in the male germ line

1988 ◽  
Vol 8 (7) ◽  
pp. 2925-2932
Author(s):  
Z F Zakeri ◽  
D J Wolgemuth ◽  
C R Hunt

A unique member of the mouse HSP70 gene family has been isolated and characterized with respect to its DNA sequence organization and expression. The gene contains extensive similarity to a heat shock-inducible HSP70 gene within the coding region but diverges in both 3' and 5' nontranslated regions. The gene does not yield transcripts in response to heat shock in mouse L cells. Rather, the gene appears to be activated uniquely in the male germ line. Analysis of RNA from different developmental stages and from enriched populations of spermatogenic cells revealed that this gene is expressed during the prophase stage of meiosis. A transcript different in size from the major heat-inducible mouse transcripts is most abundant in meiotic prophase spermatocytes and decreases in abundance in postmeiotic stages of spermatogenesis. This pattern of expression is distinct from that observed for another member of this gene family, which was previously shown to be expressed abundantly in postmeiotic germ cells. These observations suggest that specific HSP70 gene family members play distinct roles in the differentiation of the germ cell lineage in mammals.

1988 ◽  
Vol 8 (7) ◽  
pp. 2925-2932 ◽  
Author(s):  
Z F Zakeri ◽  
D J Wolgemuth ◽  
C R Hunt

A unique member of the mouse HSP70 gene family has been isolated and characterized with respect to its DNA sequence organization and expression. The gene contains extensive similarity to a heat shock-inducible HSP70 gene within the coding region but diverges in both 3' and 5' nontranslated regions. The gene does not yield transcripts in response to heat shock in mouse L cells. Rather, the gene appears to be activated uniquely in the male germ line. Analysis of RNA from different developmental stages and from enriched populations of spermatogenic cells revealed that this gene is expressed during the prophase stage of meiosis. A transcript different in size from the major heat-inducible mouse transcripts is most abundant in meiotic prophase spermatocytes and decreases in abundance in postmeiotic stages of spermatogenesis. This pattern of expression is distinct from that observed for another member of this gene family, which was previously shown to be expressed abundantly in postmeiotic germ cells. These observations suggest that specific HSP70 gene family members play distinct roles in the differentiation of the germ cell lineage in mammals.


1987 ◽  
Vol 7 (5) ◽  
pp. 1791-1796
Author(s):  
Z F Zakeri ◽  
D J Wolgemuth

Mouse somatic tissues contain low levels of transcripts homologous to the heat shock-inducible and cognate members of the heat shock protein 70 (hsp70) gene family. An abundant, unique sized hsp70 mRNA of 2.7 kilobases (kb) is present in testes in the absence of exogenous stress. Its expression is restricted to germ cells and is developmentally regulated. The 2.7-kb transcript first appears during the haploid phase of spermatogenesis and is stable throughout the morphogenic stages of spermiogenesis. A 2.7-kb hsp70 mRNA is present in rat and human testes. These observations suggest that a member of the hsp70 gene family plays a role in the development of the mammalian male germ cell lineage.


1987 ◽  
Vol 7 (5) ◽  
pp. 1791-1796 ◽  
Author(s):  
Z F Zakeri ◽  
D J Wolgemuth

Mouse somatic tissues contain low levels of transcripts homologous to the heat shock-inducible and cognate members of the heat shock protein 70 (hsp70) gene family. An abundant, unique sized hsp70 mRNA of 2.7 kilobases (kb) is present in testes in the absence of exogenous stress. Its expression is restricted to germ cells and is developmentally regulated. The 2.7-kb transcript first appears during the haploid phase of spermatogenesis and is stable throughout the morphogenic stages of spermiogenesis. A 2.7-kb hsp70 mRNA is present in rat and human testes. These observations suggest that a member of the hsp70 gene family plays a role in the development of the mammalian male germ cell lineage.


1990 ◽  
Vol 10 (6) ◽  
pp. 3232-3238 ◽  
Author(s):  
L A Perkins ◽  
J S Doctor ◽  
K Zhang ◽  
L Stinson ◽  
N Perrimon ◽  
...  

The Drosophila heat shock cognate gene 4 (hsc4), a member of the hsp70 gene family, encodes an abundant protein, hsc70, that is more similar to the constitutively expressed human protein than the Drosophila heat-inducible hsp70. Developmental expression revealed that hsc4 transcripts are enriched in cells active in endocytosis and those undergoing rapid growth and changes in shape.


1990 ◽  
Vol 10 (6) ◽  
pp. 3232-3238
Author(s):  
L A Perkins ◽  
J S Doctor ◽  
K Zhang ◽  
L Stinson ◽  
N Perrimon ◽  
...  

The Drosophila heat shock cognate gene 4 (hsc4), a member of the hsp70 gene family, encodes an abundant protein, hsc70, that is more similar to the constitutively expressed human protein than the Drosophila heat-inducible hsp70. Developmental expression revealed that hsc4 transcripts are enriched in cells active in endocytosis and those undergoing rapid growth and changes in shape.


2004 ◽  
Vol 16 (1) ◽  
pp. 23-28 ◽  
Author(s):  
ANTONIETTA LA TERZA ◽  
CRISTINA MICELI ◽  
PIERANGELO LUPORINI

In the Antarctic ciliate, Euplotes focardii, the heat-shock protein 70 (Hsp70) gene does not show any appreciable activation by a thermal stress. Yet, it is activated to appreciable transcriptional levels by oxidative and chemical stresses, thus implying that it evolved a mechanism of selective, stress-specific response. A basic step in investigating this mechanism is the determination of the complete nucleotide sequence of the E. focardii Hsp70 gene. This gene contains a coding region specific for an Hsp70 protein that carries unique amino acid substitutions of potential significance for cold adaptation, and a 5' regulatory region that includes sequence motifs denoting two distinct types of stress-inducible promoters, known as “Heat Shock Elements” (HSE) and “Stress Response Elements” (StRE). From the study of the interactions of these regulatory elements with their specific transactivator factors we expect to shed light on the adaptive modifications that prevent the Hsp70 gene of E. focardii from responding to thermal stress while being responsive to other stresses.


2020 ◽  
Vol 174 ◽  
pp. 107394
Author(s):  
Qiang He ◽  
Jian Luo ◽  
Jin-Zhi Xu ◽  
Xian-zhi Meng ◽  
Guo-Qing Pan ◽  
...  
Keyword(s):  

Genetics ◽  
2004 ◽  
Vol 167 (2) ◽  
pp. 707-723 ◽  
Author(s):  
Cordula Schulz ◽  
Amy A. Kiger ◽  
Salli I. Tazuke ◽  
Yukiko M. Yamashita ◽  
Luiz C. Pantalena-Filho ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document