Developmental-stage-specific expression of the hsp70 gene family during differentiation of the mammalian male germ line

1987 ◽  
Vol 7 (5) ◽  
pp. 1791-1796
Author(s):  
Z F Zakeri ◽  
D J Wolgemuth

Mouse somatic tissues contain low levels of transcripts homologous to the heat shock-inducible and cognate members of the heat shock protein 70 (hsp70) gene family. An abundant, unique sized hsp70 mRNA of 2.7 kilobases (kb) is present in testes in the absence of exogenous stress. Its expression is restricted to germ cells and is developmentally regulated. The 2.7-kb transcript first appears during the haploid phase of spermatogenesis and is stable throughout the morphogenic stages of spermiogenesis. A 2.7-kb hsp70 mRNA is present in rat and human testes. These observations suggest that a member of the hsp70 gene family plays a role in the development of the mammalian male germ cell lineage.

1987 ◽  
Vol 7 (5) ◽  
pp. 1791-1796 ◽  
Author(s):  
Z F Zakeri ◽  
D J Wolgemuth

Mouse somatic tissues contain low levels of transcripts homologous to the heat shock-inducible and cognate members of the heat shock protein 70 (hsp70) gene family. An abundant, unique sized hsp70 mRNA of 2.7 kilobases (kb) is present in testes in the absence of exogenous stress. Its expression is restricted to germ cells and is developmentally regulated. The 2.7-kb transcript first appears during the haploid phase of spermatogenesis and is stable throughout the morphogenic stages of spermiogenesis. A 2.7-kb hsp70 mRNA is present in rat and human testes. These observations suggest that a member of the hsp70 gene family plays a role in the development of the mammalian male germ cell lineage.


1988 ◽  
Vol 8 (7) ◽  
pp. 2925-2932 ◽  
Author(s):  
Z F Zakeri ◽  
D J Wolgemuth ◽  
C R Hunt

A unique member of the mouse HSP70 gene family has been isolated and characterized with respect to its DNA sequence organization and expression. The gene contains extensive similarity to a heat shock-inducible HSP70 gene within the coding region but diverges in both 3' and 5' nontranslated regions. The gene does not yield transcripts in response to heat shock in mouse L cells. Rather, the gene appears to be activated uniquely in the male germ line. Analysis of RNA from different developmental stages and from enriched populations of spermatogenic cells revealed that this gene is expressed during the prophase stage of meiosis. A transcript different in size from the major heat-inducible mouse transcripts is most abundant in meiotic prophase spermatocytes and decreases in abundance in postmeiotic stages of spermatogenesis. This pattern of expression is distinct from that observed for another member of this gene family, which was previously shown to be expressed abundantly in postmeiotic germ cells. These observations suggest that specific HSP70 gene family members play distinct roles in the differentiation of the germ cell lineage in mammals.


1988 ◽  
Vol 8 (7) ◽  
pp. 2925-2932
Author(s):  
Z F Zakeri ◽  
D J Wolgemuth ◽  
C R Hunt

A unique member of the mouse HSP70 gene family has been isolated and characterized with respect to its DNA sequence organization and expression. The gene contains extensive similarity to a heat shock-inducible HSP70 gene within the coding region but diverges in both 3' and 5' nontranslated regions. The gene does not yield transcripts in response to heat shock in mouse L cells. Rather, the gene appears to be activated uniquely in the male germ line. Analysis of RNA from different developmental stages and from enriched populations of spermatogenic cells revealed that this gene is expressed during the prophase stage of meiosis. A transcript different in size from the major heat-inducible mouse transcripts is most abundant in meiotic prophase spermatocytes and decreases in abundance in postmeiotic stages of spermatogenesis. This pattern of expression is distinct from that observed for another member of this gene family, which was previously shown to be expressed abundantly in postmeiotic germ cells. These observations suggest that specific HSP70 gene family members play distinct roles in the differentiation of the germ cell lineage in mammals.


2015 ◽  
Vol 93 (6) ◽  
pp. 596-603 ◽  
Author(s):  
C. Fang ◽  
L. Schmitz ◽  
P.M. Ferree

The heterochromatin protein 1 (HP1) gene family includes a set of paralogs in higher eukaryotes that serve fundamental roles in heterochromatin structure and maintenance, and other chromatin-related functions. At least 10 full and 16 partial HP1 genes exist among Drosophila species, with multiple gene gains, losses, and sub-functionalizations within this insect group. An important question is whether this diverse set of HP1 genes and their dynamic evolution represent the standard rule in eukaryotic groups. Here we have begun to address this question by bio-informatically identifying the HP1 family genes in representative species of the insect order Hymenoptera, which includes all ants, bees, wasps, and sawflies. Compared to Drosophila species, Hymenopterans have a much simpler set of HP1 genes, including one full and two partial HP1s. All 3 genes appear to have been present in the common ancestor of the Hymenopterans and they derive from a Drosophila HP1B-like gene. In ants, a partial HP1 gene containing only a chromoshadow domain harbors amino acid changes at highly conserved sites within the PxVxL recognition region, suggesting that this gene has undergone sub-functionalization. In the jewel wasp Nasonia vitripennis, the full HP1 and partial chromoshadow-only HP1 are expressed in both germ line and somatic tissues. However, the partial chromodomain-only HP1 is expressed exclusively in the ovary and testis, suggesting that it may have a specialized chromatin role during gametogenesis. Our findings demonstrate that the HP1 gene family is much simpler and evolutionarily less dynamic within the Hymenopterans compared to the much younger Drosophila group, a pattern that may reflect major differences in the range of chromatin-related functions present in these and perhaps other insect groups.


1990 ◽  
Vol 10 (6) ◽  
pp. 3232-3238 ◽  
Author(s):  
L A Perkins ◽  
J S Doctor ◽  
K Zhang ◽  
L Stinson ◽  
N Perrimon ◽  
...  

The Drosophila heat shock cognate gene 4 (hsc4), a member of the hsp70 gene family, encodes an abundant protein, hsc70, that is more similar to the constitutively expressed human protein than the Drosophila heat-inducible hsp70. Developmental expression revealed that hsc4 transcripts are enriched in cells active in endocytosis and those undergoing rapid growth and changes in shape.


1996 ◽  
Vol 271 (1) ◽  
pp. C121-C129 ◽  
Author(s):  
S. Fukayama ◽  
B. Lanske ◽  
J. Guo ◽  
H. M. Kronenberg ◽  
F. R. Bringhurst

Parathyroid hormone (PTH) activates both adenylate cyclase and phospholipase C in target cells, and cloned PTH/PTH-related protein (PTHrP) receptor can mediate both responses when expressed in host cells such as LLC-PK1 renal epithelial cells. Because calcitonin (CT) is known to augment 70-kDa heat shock protein (HSP70) mRNA by an adenosine 3',5'-cyclic monophosphate (cAMP)-independent mechanism in LLC-PK1 cells, we examined regulation of HSP70 transcription by PTH in these cells. Like CT, human PTH-(1-34) [hPTH-(1-34); 10(-10) to 10(-7) M)] increased porcine HSP70 mRNA and human HSP70 promoter-chloramphenicol acetyltransferase (CAT) expression within 4 h in LLC-PK1 cells that stably express > or = 100,000 PTH/PTHrP receptors per cell. The effect of PTH on HSP70 mRNA was not mimicked by cAMP analogues, forskolin, phorbol esters, Ca2+ ionophores, or alpha-thrombin; was insensitive to pertussis toxin; and was not due to increased mRNA stability. The upregulation of HSP70 gene transcription by hPTH (and CT) was clearly observed even after deletion of the functional heat shock consensus element in the promoter region of the human HSP70/CAT reporter. Upregulation of HSP70 transcription via endogenous PTH receptors also was observed in the osteoblastic cell lines SaOS-2 and ROS 17/2.8. Regulation of HSP70 gene transcription by PTH may be a common cellular response to the hormone, which, in some cells, may not be mediated by activation of adenylate cyclase or protein kinase C.


Blood ◽  
1991 ◽  
Vol 77 (3) ◽  
pp. 579-586
Author(s):  
G Fincato ◽  
N Polentarutti ◽  
A Sica ◽  
A Mantovani ◽  
F Colotta

In this study we have examined the expression of a heat-shock protein (HSP) 70 gene in normal human peripheral blood leukocytes. Northern blot analysis showed that appreciable levels of hsp70 mRNA are present in monocytes and granulocytes, whereas transcript levels were barely detectable or absent in lymphocytes. Monocytes functionally activated by bacterial lipopolysaccharide (LPS) showed an early (15 minutes) increase of hsp70 transcripts that was shown, by actinomycin D blocking and nuclear run-off experiments, to be dependent on transcriptional activation of the gene. LPS did not appreciably affect the hsp70 mRNA half-life. Monocytes exposed to inactivated streptococci, phorbol-12- myristate-13-acetate, and tumor necrosis factor showed augmented levels of hsp70 transcripts, whereas interferon-gamma and monocyte, granulocyte, and granulocyte-monocyte colony-stimulating factors had no effect. Adherence to plastic augmented hsp70 expression in monocytes. S1 protection analysis indicated that the gene expressed in monocytes is indeed a heat-inducible member of the hsp70 gene family rather than a constitutively expressed heat-shock cognate gene. Western blot analysis showed that a heat-inducible HSP72 was present in monocytes and, at augmented levels, in LPS-treated monocytes. LPS-activated monocytes were more resistant to heat shock than unstimulated cells. These data indicate that a heat-inducible hsp70 gene can be efficiently expressed in myelomonocytic cells at physiologic temperatures. Expression of hsp70 genes in monocytes suggests a possible role of heat- inducible genes in the differentiation and/or functional activation of terminally differentiated nonproliferating elements of the myelomonocytic lineage.


1994 ◽  
Vol 267 (5) ◽  
pp. G875-G882 ◽  
Author(s):  
B. M. Evers ◽  
J. A. Ehrenfried ◽  
X. Wang ◽  
C. M. Townsend ◽  
J. C. Thompson

Expression of the neurotensin/neuromedin N (NT/N) gene is developmentally regulated in a temporal- and spatial-specific pattern in the small bowel. The purpose of our study was to determine 1) whether the temporal expression of NT/N could be altered by ectopic placement of small bowel and 2) whether the spatial-specific expression of NT/N could be altered by different diets. We found that the relative temporal pattern of NT/N expression was unchanged in rat jejunal and ileal xenografts implanted into the flanks of athymic nude mice. To determine whether the spatial-specific pattern of NT/N expression could be altered by different luminal nutrients, 28-day-old rats were randomized to receive chow or chemically defined liquid diets for 60 days at which time the jejunoileum was divided into eight equal segments, and NT/N expression was analyzed. The normal pattern of increasing levels of NT/N mRNA along the jejunum-to-ileum axis was not altered by any of the liquid diets. In contrast to NT/N, we found that expression of sucrase-isomaltase varied greatly depending on both location and type of luminal nutrients. We conclude that the strict temporal- and spatial-specific pattern of NT/N expression is not affected by either location or luminal contents, thus suggesting an intrinsic program of NT/N gene expression. Furthermore, we speculate that the NT/N gene may provide a useful endocrine paradigm to investigate the factors regulating the establishment and maintenance of certain cell lineage-specific patterns along the cephalocaudal axis of the gut.


Sign in / Sign up

Export Citation Format

Share Document