scholarly journals Structure and regulation of a nuclear gene in Saccharomyces cerevisiae that specifies MRP13, a protein of the small subunit of the mitochondrial ribosome.

1988 ◽  
Vol 8 (9) ◽  
pp. 3647-3660 ◽  
Author(s):  
J A Partaledis ◽  
T L Mason

MRP13 is defined by biochemical criteria as a 35-kilodalton small subunit protein of the yeast mitochondrial ribosome. The MRP13 gene was identified by immunological screening of a yeast genomic library in lambda gt11 and a functional copy of the gene has been cloned on a 2.2-kilobase BglII fragment. Sequencing of this fragment showed that the MRP13 coding region specifies a 324-amino-acid basic protein with a calculated Mr of 37,366. Computer searches failed to reveal any significant sequence similarity to previously identified ribosomal proteins or to the sequences in the current National Biomedical Research Foundation data base. Cells carrying disrupted copies of MRP13 lacked the MRP13 protein but were not impaired in either mitochondrial protein synthesis or assembly of 37S ribosomal subunits, indicating that, like L29 and L30 in Escherichia coli (M. Lotti, E. R. Dabbs, R. Hasenbank, M. Stöffler-Meilicke, and G. Stöffler, Mol. Gen. Genet. 192:295-300, 1983), MRP13 is not essential for ribosome synthesis or function. Analysis of the sequence in the MRP13 5'-flanking region revealed the closely linked gene for the cytoplasmic ribosomal protein rp39A. The rp39A coding region began at nucleotide -846 and ended at -325 with respect to the MRP13 translational start. The steady-state levels of the MRP13 mRNA were determined in response to carbon catabolite repression, variation in the mitochondrial genetic background, and increased gene dosage of MRP13. In [rho+] cells, transcript levels were repressed severalfold by growth in glucose compared with growth in either galactose or nonfermentable carbon sources. In respiratory-deficient strains ([rho0], [mit-]), however, transcription appeared to be largely derepressed even in the presence of high concentrations of glucose. Despite high levels of the MRP13 transcripts in [rho0] cells, the MRP13 protein did not accumulate, suggesting that the protein is relatively unstable in the absence of ribosome assembly. Cells carrying the MRP13 gene on a multiple-copy plasmid overproduced the mRNA in rough proportion to the gene dosage and the protein in a significant but lesser amount. The results indicate that MRP13 expression is regulated predominantly at the transcriptional level in response to catabolite repression and the cellular capacity for respiration and, in addition, that protein levels appear to be modulated posttranscriptionally by degradation of free copies of the MRP13 protein.

1988 ◽  
Vol 8 (9) ◽  
pp. 3647-3660 ◽  
Author(s):  
J A Partaledis ◽  
T L Mason

MRP13 is defined by biochemical criteria as a 35-kilodalton small subunit protein of the yeast mitochondrial ribosome. The MRP13 gene was identified by immunological screening of a yeast genomic library in lambda gt11 and a functional copy of the gene has been cloned on a 2.2-kilobase BglII fragment. Sequencing of this fragment showed that the MRP13 coding region specifies a 324-amino-acid basic protein with a calculated Mr of 37,366. Computer searches failed to reveal any significant sequence similarity to previously identified ribosomal proteins or to the sequences in the current National Biomedical Research Foundation data base. Cells carrying disrupted copies of MRP13 lacked the MRP13 protein but were not impaired in either mitochondrial protein synthesis or assembly of 37S ribosomal subunits, indicating that, like L29 and L30 in Escherichia coli (M. Lotti, E. R. Dabbs, R. Hasenbank, M. Stöffler-Meilicke, and G. Stöffler, Mol. Gen. Genet. 192:295-300, 1983), MRP13 is not essential for ribosome synthesis or function. Analysis of the sequence in the MRP13 5'-flanking region revealed the closely linked gene for the cytoplasmic ribosomal protein rp39A. The rp39A coding region began at nucleotide -846 and ended at -325 with respect to the MRP13 translational start. The steady-state levels of the MRP13 mRNA were determined in response to carbon catabolite repression, variation in the mitochondrial genetic background, and increased gene dosage of MRP13. In [rho+] cells, transcript levels were repressed severalfold by growth in glucose compared with growth in either galactose or nonfermentable carbon sources. In respiratory-deficient strains ([rho0], [mit-]), however, transcription appeared to be largely derepressed even in the presence of high concentrations of glucose. Despite high levels of the MRP13 transcripts in [rho0] cells, the MRP13 protein did not accumulate, suggesting that the protein is relatively unstable in the absence of ribosome assembly. Cells carrying the MRP13 gene on a multiple-copy plasmid overproduced the mRNA in rough proportion to the gene dosage and the protein in a significant but lesser amount. The results indicate that MRP13 expression is regulated predominantly at the transcriptional level in response to catabolite repression and the cellular capacity for respiration and, in addition, that protein levels appear to be modulated posttranscriptionally by degradation of free copies of the MRP13 protein.


1988 ◽  
Vol 8 (9) ◽  
pp. 3636-3646
Author(s):  
K Fearon ◽  
T L Mason

The gene for MRP7, a 40-kilodalton protein of the large subunit of the yeast mitochondrial ribosome, was identified in a lambda gt11 expression library by immunological screening with a monoclonal antibody to MRP7. An intact copy of MRP7 was then isolated from a yeast genomic library by colony hybridization. Gene disruption showed that MRP7 protein was essential for ribosomal function. Sequencing of MRP7 revealed a coding region for a basic (pI 10.6), 43.2-kilodalton protein containing 371 amino acid residues. Amino acid residues 28 to 112 of the deduced MRP7 sequence aligned with the 84 residues of the Escherichia coli ribosomal protein L27, but no significant similarity was detected between the carboxy-terminal 259 amino acids of MRP7 and other protein sequences in existing computer data bases. Within the aligned region, there was 49% amino acid identity between MRP7 and L27, compared with the 57% identity observed between L27 and its homolog in Bacillus stearothermophilus. The steady-state levels of the MRP7 protein and its mRNA were monitored in response to catabolite repression and to increased dosage of the MRP7 gene. The response to catabolite repression was characterized by a ninefold change in the level of the protein and little, if any, change in the level of the mRNA. In cells carrying the MRP7 gene on a high-copy-number plasmid, the mRNA was increased 20-fold, but there was no significant increase in MRP7 protein. Furthermore, MRP7 mRNA and protein accumulated at normal levels in [rho0] cells, which are devoid of 21S rRNA, indicating that the protein is relatively stable in the absence of ribosome assembly. Together, these results suggest that MRP7 is regulated posttranscriptionally, probably at the level of protein synthesis rather than protein turnover.


1988 ◽  
Vol 8 (9) ◽  
pp. 3636-3646 ◽  
Author(s):  
K Fearon ◽  
T L Mason

The gene for MRP7, a 40-kilodalton protein of the large subunit of the yeast mitochondrial ribosome, was identified in a lambda gt11 expression library by immunological screening with a monoclonal antibody to MRP7. An intact copy of MRP7 was then isolated from a yeast genomic library by colony hybridization. Gene disruption showed that MRP7 protein was essential for ribosomal function. Sequencing of MRP7 revealed a coding region for a basic (pI 10.6), 43.2-kilodalton protein containing 371 amino acid residues. Amino acid residues 28 to 112 of the deduced MRP7 sequence aligned with the 84 residues of the Escherichia coli ribosomal protein L27, but no significant similarity was detected between the carboxy-terminal 259 amino acids of MRP7 and other protein sequences in existing computer data bases. Within the aligned region, there was 49% amino acid identity between MRP7 and L27, compared with the 57% identity observed between L27 and its homolog in Bacillus stearothermophilus. The steady-state levels of the MRP7 protein and its mRNA were monitored in response to catabolite repression and to increased dosage of the MRP7 gene. The response to catabolite repression was characterized by a ninefold change in the level of the protein and little, if any, change in the level of the mRNA. In cells carrying the MRP7 gene on a high-copy-number plasmid, the mRNA was increased 20-fold, but there was no significant increase in MRP7 protein. Furthermore, MRP7 mRNA and protein accumulated at normal levels in [rho0] cells, which are devoid of 21S rRNA, indicating that the protein is relatively stable in the absence of ribosome assembly. Together, these results suggest that MRP7 is regulated posttranscriptionally, probably at the level of protein synthesis rather than protein turnover.


1989 ◽  
Vol 9 (10) ◽  
pp. 4161-4169
Author(s):  
S A Mayer ◽  
C L Dieckmann

CBP1 is a yeast nuclear gene encoding a mitochondrial protein that stabilizes the 5' end of cytochrome b (cob) pre-mRNA. Cytochrome b is the only mitochondrially synthesized component of the respiratory chain complex III. Since the nuclearly encoded subunits of this complex are regulated at the transcriptional level by catabolite repression, we hypothesized that CBP1 might be similarly regulated. To test the idea that transcriptional regulation of CBP1 could coordinate an increase in cytochrome b mRNA stability with an increase in nuclearly encoded complex III subunit production, we characterized the change in abundance of CBP1 mRNA during derepression on a nonfermentable carbon source. Poly(A)+ RNA from derepressed yeast cells was examined by Northern (RNA) analyses with cRNA probes from CBP1. Both 2.2- and 1.3-kilobase (kb) transcripts were detected. The 1.3-kb mRNA lacked approximately 900 nucleotides of the 3' end of the 2.2-kb mRNA, which encodes the carboxyl-terminal 250 amino acid residues of the CBP1 coding sequence. Northern analyses of RNA isolated from deletion-insertion mutants of CBP1 and from strains that overexpress CBP1 mRNA demonstrated that both mRNAs were transcribed from the CBP1 gene. Furthermore, we demonstrated that the levels of the two CBP1 mRNAs were reciprocally regulated by the carbon source in the growth medium. This is the first description of a yeast gene from which two transcripts that can encode proteins with distinctly different coding properties are generated by alternative 3'-end formation.


2019 ◽  
Vol 28 (16) ◽  
pp. 2711-2719 ◽  
Author(s):  
Enrico Bugiardini ◽  
Alice L Mitchell ◽  
Ilaria Dalla Rosa ◽  
Hue-Tran Horning-Do ◽  
Alan M Pitmann ◽  
...  

Abstract Mitochondrial disorders are clinically and genetically heterogeneous and are associated with a variety of disease mechanisms. Defects of mitochondrial protein synthesis account for the largest subgroup of disorders manifesting with impaired respiratory chain capacity; yet, only a few have been linked to dysfunction in the protein components of the mitochondrial ribosomes. Here, we report a subject presenting with dyskinetic cerebral palsy and partial agenesis of the corpus callosum, while histochemical and biochemical analyses of skeletal muscle revealed signs of mitochondrial myopathy. Using exome sequencing, we identified a homozygous variant c.215C>T in MRPS25, which encodes for a structural component of the 28S small subunit of the mitochondrial ribosome (mS25). The variant segregated with the disease and substitutes a highly conserved proline residue with leucine (p.P72L) that, based on the high-resolution structure of the 28S ribosome, is predicted to compromise inter-protein contacts and destabilize the small subunit. Concordant with the in silico analysis, patient’s fibroblasts showed decreased levels of MRPS25 and other components of the 28S subunit. Moreover, assembled 28S subunits were scarce in the fibroblasts with mutant mS25 leading to impaired mitochondrial translation and decreased levels of multiple respiratory chain subunits. Crucially, these abnormalities were rescued by transgenic expression of wild-type MRPS25 in the mutant fibroblasts. Collectively, our data demonstrate the pathogenicity of the p.P72L variant and identify MRPS25 mutations as a new cause of mitochondrial translation defect.


2019 ◽  
Author(s):  
Hao Chen ◽  
Zhennan Shi ◽  
Jiaojiao Guo ◽  
Kao-jung Chang ◽  
Qianqian Chen ◽  
...  

ABSTRACTMitochondrial DNA (mtDNA) gene expression is coordinately regulated pre- and post-transcriptionally, and its perturbation can lead to human pathologies. Mitochondrial ribosomal RNAs (mt-rRNAs) undergo a series of nucleotide modifications following release from polycistronic mitochondrial RNA (mtRNA) precursors, which is essential for mitochondrial ribosomal biogenesis. Cytosine N4 methylation (m4C) at position 839 of the 12S small subunit (SSU) mt-rRNA was identified decades ago, however, its biogenesis and function have not been elucidated in details. Here we demonstrate that human Methyltransferase Like 15 (METTL15) is responsible for 12S mt-rRNA methylation at C839 (m4C839) both in vivo and in vitro. We tracked the evolutionary history of RNA m4C methyltransferases and revealed the difference in substrates preference between METTL15 and its bacterial ortholog rsmH. Additionally, unlike the very modest impact on ribosome upon loss of m4C methylation in bacterial SSU rRNA, we found that depletion of METTL15 specifically causes severe defects in mitochondrial ribosome assembly, which leads to an impaired translation of mitochondrial protein-coding genes and a decreased mitochondrial respiration capacity. Our findings point to a co-evolution of methylatransferase specificities and modification patterns in rRNA with differential impact on prokaryotic ribosome versus eukaryotic mitochondrial ribosome.


1982 ◽  
Vol 95 (1) ◽  
pp. 267-277 ◽  
Author(s):  
R J Lapolla ◽  
A M Lambowitz

In Neurospora, one protein associated with the mitochondrial small ribosomal subunit (S-5, Mr 52,000) is synthesized intramitochondrially and is assumed to be encoded by mtDNA. When mitochondrial protein synthesis is inhibited, either by chloramphenicol or by mutation, cells accumulate incomplete mitochondrial small subunits (CAP-30S and INC-30S particles) that are deficient in S-5 and several other proteins. To gain additional insight into the role of S-5 in mitochondrial ribosome assembly, the structures of Neurospora mitochondrial ribosomal subunits, CAP-30S particles, and INC-30S particles were analyzed by equilibrium centrifugation in CsCl gradients containing different concentrations of Mg+2. The results show (a) that S-5 is tightly associated with small ribosomal subunits, as judged by the fact that it is among the last proteins to be dissociated in CsCl gradients as the Mg+2 concentration is decreased, and (b) that CAP-30S and INC-30S particles, which are deficient in S-5, contain at most 12 proteins that are bound as tightly as in mature small subunits. The CAP-30S particles isolated from sucrose gradients contain a number of proteins that appear to be loosely bound, as judged by dissociation of these proteins in CsCl gradients under conditions in which they remain associated with mature small subunits. The results suggest that S-5 is required for the stable binding of a subset of small subunit ribosomal proteins.


2020 ◽  
Vol 295 (25) ◽  
pp. 8505-8513 ◽  
Author(s):  
Hao Chen ◽  
Zhennan Shi ◽  
Jiaojiao Guo ◽  
Kao-jung Chang ◽  
Qianqian Chen ◽  
...  

Mitochondrial DNA gene expression is coordinately regulated both pre- and post-transcriptionally, and its perturbation can lead to human pathologies. Mitochondrial rRNAs (mt-rRNAs) undergo a series of nucleotide modifications after release from polycistronic mitochondrial RNA precursors, which is essential for mitochondrial ribosomal biogenesis. Cytosine N4-methylation (m4C) at position 839 (m4C839) of the 12S small subunit mt-rRNA was identified decades ago; however, its biogenesis and function have not been elucidated in detail. Here, using several approaches, including immunofluorescence, RNA immunoprecipitation and methylation assays, and bisulfite mapping, we demonstrate that human methyltransferase-like 15 (METTL15), encoded by a nuclear gene, is responsible for 12S mt-rRNA methylation at m4C839 both in vivo and in vitro. We tracked the evolutionary history of RNA m4C methyltransferases and identified a difference in substrate preference between METTL15 and its bacterial ortholog rsmH. Additionally, unlike the very modest impact of a loss of m4C methylation in bacterial small subunit rRNA on the ribosome, we found that METTL15 depletion results in impaired translation of mitochondrial protein-coding mRNAs and decreases mitochondrial respiration capacity. Our findings reveal that human METTL15 is required for mitochondrial function, delineate the evolution of methyltransferase substrate specificities and modification patterns in rRNA, and highlight a differential impact of m4C methylation on prokaryotic ribosomes and eukaryotic mitochondrial ribosomes.


Genetics ◽  
2001 ◽  
Vol 159 (1) ◽  
pp. 241-254
Author(s):  
Janne M Toivonen ◽  
Kevin M C O'Dell ◽  
Nathalie Petit ◽  
Sharon C Irvine ◽  
Gillian K Knight ◽  
...  

Abstract Mutations in mtDNA-encoded components of the mitochondrial translational apparatus are associated with diverse pathological states in humans, notably sensorineural deafness. To develop animal models of such disorders, we have manipulated the nuclear gene for mitochondrial ribosomal protein S12 in Drosophila (technical knockout, tko). The prototypic mutant tko25t exhibits developmental delay, bang sensitivity, impaired male courtship, and defective response to sound. On the basis of a transgenic reversion test, these phenotypes are attributable to a single substitution (L85H) at a conserved residue of the tko protein. The mutant is hypersensitive to doxycyclin, an antibiotic that selectively inhibits mitochondrial protein synthesis, and mutant larvae have greatly diminished activities of mitochondrial redox enzymes and decreased levels of mitochondrial small-subunit rRNA. A second mutation in the tko gene, Q116K, which is predicted to impair the accuracy of mitochondrial translation, results in the completely different phenotype of recessive female sterility, based on three independent transgenic insertions. We infer that the tko25t mutant provides a model of mitochondrial hearing impairment resulting from a quantitative deficiency of mitochondrial translational capacity.


1989 ◽  
Vol 9 (10) ◽  
pp. 4161-4169 ◽  
Author(s):  
S A Mayer ◽  
C L Dieckmann

CBP1 is a yeast nuclear gene encoding a mitochondrial protein that stabilizes the 5' end of cytochrome b (cob) pre-mRNA. Cytochrome b is the only mitochondrially synthesized component of the respiratory chain complex III. Since the nuclearly encoded subunits of this complex are regulated at the transcriptional level by catabolite repression, we hypothesized that CBP1 might be similarly regulated. To test the idea that transcriptional regulation of CBP1 could coordinate an increase in cytochrome b mRNA stability with an increase in nuclearly encoded complex III subunit production, we characterized the change in abundance of CBP1 mRNA during derepression on a nonfermentable carbon source. Poly(A)+ RNA from derepressed yeast cells was examined by Northern (RNA) analyses with cRNA probes from CBP1. Both 2.2- and 1.3-kilobase (kb) transcripts were detected. The 1.3-kb mRNA lacked approximately 900 nucleotides of the 3' end of the 2.2-kb mRNA, which encodes the carboxyl-terminal 250 amino acid residues of the CBP1 coding sequence. Northern analyses of RNA isolated from deletion-insertion mutants of CBP1 and from strains that overexpress CBP1 mRNA demonstrated that both mRNAs were transcribed from the CBP1 gene. Furthermore, we demonstrated that the levels of the two CBP1 mRNAs were reciprocally regulated by the carbon source in the growth medium. This is the first description of a yeast gene from which two transcripts that can encode proteins with distinctly different coding properties are generated by alternative 3'-end formation.


Sign in / Sign up

Export Citation Format

Share Document