Cytochrome oxidase subunit V gene of Neurospora crassa: DNA sequences, chromosomal mapping, and evidence that the cya-4 locus specifies the structural gene for subunit V

1989 ◽  
Vol 9 (2) ◽  
pp. 566-577
Author(s):  
M S Sachs ◽  
H Bertrand ◽  
R L Metzenberg ◽  
U L RajBhandary

The sequences of cDNA and genomic DNA clones for Neurospora cytochrome oxidase subunit V show that the protein is synthesized as a 171-amino-acid precursor containing a 27-amino-acid N-terminal extension. The subunit V protein sequence is 34% identical to that of Saccharomyces cerevisiae subunit V; these proteins, as well as the corresponding bovine subunit, subunit IV, contain a single hydrophobic domain which most likely spans the inner mitochondrial membrane. The Neurospora crassa subunit V gene (cox5) contains two introns, 398 and 68 nucleotides long, which share the conserved intron boundaries 5'GTRNGT...CAG3' and the internal consensus sequence ACTRACA. Two short sequences, YGCCAG and YCCGTTY, are repeated four times each in the cox5 gene upstream of the mRNA 5' termini. The cox5 mRNA 5' ends are heterogeneous, with the major mRNA 5' end located 144 to 147 nucleotides upstream from the translational start site. The mRNA contains a 3'-untranslated region of 186 to 187 nucleotides. Using restriction-fragment-length polymorphism, we mapped the cox5 gene to linkage group IIR, close to the arg-5 locus. Since one of the mutations causing cytochrome oxidase deficiency in N. crassa, cya-4-23, also maps there, we transformed the cya-4-23 strain with the wild-type cox5 gene. In contrast to cya-4-23 cells, which grow slowly, cox5 transformants grew quickly, contained cytochrome oxidase, and had 8- to 11-fold-higher levels of subunit V in their mitochondria. These data suggest (i) that the cya-4 locus in N. crassa specifies structural information for cytochrome oxidase subunit V and (ii) that, in N. crassa, as in S. cerevisiae, deficiencies in the production of nuclearly encoded cytochrome oxidase subunits result in deficiency in cytochrome oxidase activity. Finally, we show that the lower levels of subunit V in cya-4-23 cells are most likely due to substantially reduced levels of translatable subunit V mRNA.

1989 ◽  
Vol 9 (2) ◽  
pp. 566-577 ◽  
Author(s):  
M S Sachs ◽  
H Bertrand ◽  
R L Metzenberg ◽  
U L RajBhandary

The sequences of cDNA and genomic DNA clones for Neurospora cytochrome oxidase subunit V show that the protein is synthesized as a 171-amino-acid precursor containing a 27-amino-acid N-terminal extension. The subunit V protein sequence is 34% identical to that of Saccharomyces cerevisiae subunit V; these proteins, as well as the corresponding bovine subunit, subunit IV, contain a single hydrophobic domain which most likely spans the inner mitochondrial membrane. The Neurospora crassa subunit V gene (cox5) contains two introns, 398 and 68 nucleotides long, which share the conserved intron boundaries 5'GTRNGT...CAG3' and the internal consensus sequence ACTRACA. Two short sequences, YGCCAG and YCCGTTY, are repeated four times each in the cox5 gene upstream of the mRNA 5' termini. The cox5 mRNA 5' ends are heterogeneous, with the major mRNA 5' end located 144 to 147 nucleotides upstream from the translational start site. The mRNA contains a 3'-untranslated region of 186 to 187 nucleotides. Using restriction-fragment-length polymorphism, we mapped the cox5 gene to linkage group IIR, close to the arg-5 locus. Since one of the mutations causing cytochrome oxidase deficiency in N. crassa, cya-4-23, also maps there, we transformed the cya-4-23 strain with the wild-type cox5 gene. In contrast to cya-4-23 cells, which grow slowly, cox5 transformants grew quickly, contained cytochrome oxidase, and had 8- to 11-fold-higher levels of subunit V in their mitochondria. These data suggest (i) that the cya-4 locus in N. crassa specifies structural information for cytochrome oxidase subunit V and (ii) that, in N. crassa, as in S. cerevisiae, deficiencies in the production of nuclearly encoded cytochrome oxidase subunits result in deficiency in cytochrome oxidase activity. Finally, we show that the lower levels of subunit V in cya-4-23 cells are most likely due to substantially reduced levels of translatable subunit V mRNA.


Zootaxa ◽  
2005 ◽  
Vol 1049 (1) ◽  
pp. 19 ◽  
Author(s):  
ENDRE WILLASSEN

Undescribed females representing four morphological types were found in a collection of adult Diamesa from about 5000 m altitude in Rongbuk, Tibet. Short DNA sequences of cytochrome oxidase subunit 2 were used to associate two single males in the material with conspecific females. Diamesa solhoyi n.sp. and Diamesa aculeata n.sp. are described. The complete type material and additional specimens have been deposited in the Insect Collection at the Institute of Zoology, Academia Sinica, Beijing (IZAS). The sequences are deposited in Genbank with accession numbers AM051227–AM051233.


2010 ◽  
Vol 41 (3) ◽  
pp. 231-274 ◽  
Author(s):  
Jinzhong Fu ◽  
Owen Lonsdale ◽  
Brian Wiegmann ◽  
Stephen Marshall

AbstractIn this paper, the Clusiidae (Diptera: Schizophora) is analyzed phylogenetically using morphological and molecular data sets, and then redefined on the basis of derived morphological characters. The biology and distribution of the Clusiidae are also reviewed, a key is provided to the World genera, the status of the genus Craspedochaeta Czerny is reevaluated and the type of Heterochroa pictipennis Wulp is discussed. Molecular data sets include genomic DNA sequences from the mitochondrial genes COI (cytochrome oxidase subunit I) and COII (cytochrome oxidase subunit II), the large ribosomal nuclear subunit 28S, and the nuclear protein-coding carbomoylphosphate synthase (CPS) domain of CAD (or “rudimentary”). Genes were analyzed separately, in combination with each other, and in combination with a morphological data set. Although individual molecular data sets often provided conflicting phylogenetic signals, the topologies of the cladograms produced from each data set alone or in combination were largely similar. Most genus-level relationships and several basal divergences were unresolved, but Apiochaeta was very strongly and consistently supported as Sobarocephalinae, not Clusiinae. The Clusiinae and Sobarocephalinae are subsequently redefined using an adjusted morphological tree — retaining Apiochaeta in the Sobarocephalinae — that is only slightly longer (8.4%, or seven steps) than the most parsimonious tree. Our results illustrate the benefits of multiple independent data sets for phylogenetic reconstruction in order to verify and refine existing classifications.


2021 ◽  
Vol 22 (2) ◽  
Author(s):  
Vista Budiariati ◽  
Trini Susmiati ◽  
Siti Munawaroh ◽  
Rachmawati Cahyaningtyas Arie Putri ◽  
Rini Widayanti Widayanti

Abstract. Budiariati V, Susmiati T, Waroh S, Putri RCA, Widayanti R. 2021. Genetic diversity of indigenous catfish from Indonesia based on mitochondrial Cytochrome Oxidase Subunit II gene. Biodiversitas 22: 593-600. Catfish is one of the most demanding fish in Indonesia and served in a variety of traditional culinary. Due to their identical morphology and close relation between species in the order of Siluriformes, it is quite tricky to distinguish the species. This can be a threat to develop catfish production in Indonesia since there is a wide variety of catfish species in this mega biodiversity country. The study aimed to analyze the genetic diversity of Indonesian indigenous catfish especially those known as Baung fish by local people based on COII gene. The study also aimed to determine the phylogenetic relationship between the samples and compare them with the GenBank data. A total of 24 samples used in this study from 8 different rivers from 3 different islands and two samples were collected from coastal areas. The study results showed that there is genetic diversity of the Indonesian indigenous catfish based on COII gene. The sequences among 24 samples showed that from 691 nucleotides of COII gene, there were very subtle nucleotides differences of samples that originated from Bojonegoro, Magelang, and samples collected from Baru Beach, Yogyakarta. Based on COII amino acid sequences, 6 polymorphic amino acid sites were on-site number 64, 115, 123, 129, 144, and 165. The samples encoded LLB1 and LPB1 from Baru Beach, Yogyakarta, showed highest different amino acids in the six sites. Samples from the river of Central Java, Sumatra, and Kalimantan belonged to Bagridae family and consist of two different species Hemibagrus sp. and Mystus sp while samples from East Java belonged to Pangasiidae family. The Samples from coastal belonged to Ariidae family.


Sign in / Sign up

Export Citation Format

Share Document