scholarly journals Cytochrome oxidase subunit 2 gene in Neurospora crassa mitochondria.

1983 ◽  
Vol 258 (21) ◽  
pp. 13230-13235
Author(s):  
G Macino ◽  
G Morelli
1989 ◽  
Vol 9 (2) ◽  
pp. 566-577
Author(s):  
M S Sachs ◽  
H Bertrand ◽  
R L Metzenberg ◽  
U L RajBhandary

The sequences of cDNA and genomic DNA clones for Neurospora cytochrome oxidase subunit V show that the protein is synthesized as a 171-amino-acid precursor containing a 27-amino-acid N-terminal extension. The subunit V protein sequence is 34% identical to that of Saccharomyces cerevisiae subunit V; these proteins, as well as the corresponding bovine subunit, subunit IV, contain a single hydrophobic domain which most likely spans the inner mitochondrial membrane. The Neurospora crassa subunit V gene (cox5) contains two introns, 398 and 68 nucleotides long, which share the conserved intron boundaries 5'GTRNGT...CAG3' and the internal consensus sequence ACTRACA. Two short sequences, YGCCAG and YCCGTTY, are repeated four times each in the cox5 gene upstream of the mRNA 5' termini. The cox5 mRNA 5' ends are heterogeneous, with the major mRNA 5' end located 144 to 147 nucleotides upstream from the translational start site. The mRNA contains a 3'-untranslated region of 186 to 187 nucleotides. Using restriction-fragment-length polymorphism, we mapped the cox5 gene to linkage group IIR, close to the arg-5 locus. Since one of the mutations causing cytochrome oxidase deficiency in N. crassa, cya-4-23, also maps there, we transformed the cya-4-23 strain with the wild-type cox5 gene. In contrast to cya-4-23 cells, which grow slowly, cox5 transformants grew quickly, contained cytochrome oxidase, and had 8- to 11-fold-higher levels of subunit V in their mitochondria. These data suggest (i) that the cya-4 locus in N. crassa specifies structural information for cytochrome oxidase subunit V and (ii) that, in N. crassa, as in S. cerevisiae, deficiencies in the production of nuclearly encoded cytochrome oxidase subunits result in deficiency in cytochrome oxidase activity. Finally, we show that the lower levels of subunit V in cya-4-23 cells are most likely due to substantially reduced levels of translatable subunit V mRNA.


1989 ◽  
Vol 9 (2) ◽  
pp. 566-577 ◽  
Author(s):  
M S Sachs ◽  
H Bertrand ◽  
R L Metzenberg ◽  
U L RajBhandary

The sequences of cDNA and genomic DNA clones for Neurospora cytochrome oxidase subunit V show that the protein is synthesized as a 171-amino-acid precursor containing a 27-amino-acid N-terminal extension. The subunit V protein sequence is 34% identical to that of Saccharomyces cerevisiae subunit V; these proteins, as well as the corresponding bovine subunit, subunit IV, contain a single hydrophobic domain which most likely spans the inner mitochondrial membrane. The Neurospora crassa subunit V gene (cox5) contains two introns, 398 and 68 nucleotides long, which share the conserved intron boundaries 5'GTRNGT...CAG3' and the internal consensus sequence ACTRACA. Two short sequences, YGCCAG and YCCGTTY, are repeated four times each in the cox5 gene upstream of the mRNA 5' termini. The cox5 mRNA 5' ends are heterogeneous, with the major mRNA 5' end located 144 to 147 nucleotides upstream from the translational start site. The mRNA contains a 3'-untranslated region of 186 to 187 nucleotides. Using restriction-fragment-length polymorphism, we mapped the cox5 gene to linkage group IIR, close to the arg-5 locus. Since one of the mutations causing cytochrome oxidase deficiency in N. crassa, cya-4-23, also maps there, we transformed the cya-4-23 strain with the wild-type cox5 gene. In contrast to cya-4-23 cells, which grow slowly, cox5 transformants grew quickly, contained cytochrome oxidase, and had 8- to 11-fold-higher levels of subunit V in their mitochondria. These data suggest (i) that the cya-4 locus in N. crassa specifies structural information for cytochrome oxidase subunit V and (ii) that, in N. crassa, as in S. cerevisiae, deficiencies in the production of nuclearly encoded cytochrome oxidase subunits result in deficiency in cytochrome oxidase activity. Finally, we show that the lower levels of subunit V in cya-4-23 cells are most likely due to substantially reduced levels of translatable subunit V mRNA.


ENTOMON ◽  
2019 ◽  
Vol 44 (2) ◽  
pp. 155-160
Author(s):  
Keerthy Vijayan ◽  
R. Sugantha Sakthivel ◽  
T.V. Sajeev

The presence of the body colour polymorphism in the tropical invasive pest giant African snail is reported for the first time from South India. Three different body colour polymorphs were recognised viz. grey, black and white. The grey body colour is the most common polymorph. The black and white colour polymorphs are found to be in almost equal proportions in the reported localities with the grey counterparts. The cytochrome oxidase subunit I (COI) sequences of the three colour polymorphs are found to be identical. The presence of the body colour polymorphism in south India may be attributed to the avian predation and other selection pressures.


2010 ◽  
Vol 21 (1) ◽  
pp. 141-154 ◽  
Author(s):  
Jianghua Lu ◽  
Kaixuan Wang ◽  
Mariana Rodova ◽  
Raquel Esteves ◽  
Diana Berry ◽  
...  

Zootaxa ◽  
2021 ◽  
Vol 4951 (3) ◽  
pp. 559-570
Author(s):  
EUGENYI A.  MAKARCHENKO ◽  
ALEXANDER A. SEMENCHENKO ◽  
DMITRY M. PALATOV

Chironomids of the genus Pagastia Oliver (Diamesinae, Diamesini) from the mountains of Central Asia are revised using both morphological characters and molecular data. Illustrated descriptions of the adult male Pagastia (P.) caelestomontana sp. nov. from Kirgizstan and Tajikistan, P. (P.) hanseni sp. nov. from Tajikistan, and record of a finding apparently a new species P. (P.) aff. lanceolata (Tokunaga) from Tajikistan as well as an updated a key to the determination of the adult males of all known species of Pagastia are provided. A phylogenetic framework is reconstructed based on two mitochondrial genes cytochrome oxidase subunit I (COI) sequences of 34 samples belonging to 7 species of the genus Pagastia and cytochrome oxidase subunit II (COII) available for most samples. Phylogenetic trees of some known species of the genus Pagastia were reconstructed using the combined dataset and Bayesian inference (BI) and Maximum Likelihood (ML) methods. The interspecific K2P distances between seven Pagastia species including P. (P.) caelestomontana sp. nov., P. (P.) hanseni sp. nov. and undescribed P. (P.) aff. lanceolata (Tokunaga) are 6.3–13.2 which corresponding to species level. 


Sign in / Sign up

Export Citation Format

Share Document