Deletions within the amino-terminal half of the c-src gene product that alter the functional activity of the protein

1989 ◽  
Vol 9 (3) ◽  
pp. 1109-1119
Author(s):  
S P Nemeth ◽  
L G Fox ◽  
M DeMarco ◽  
J S Brugge

To examine how amino acid sequences outside of the catalytic domain of pp60c-src influence the functional activity of this protein, we have introduced deletion mutations within the amino-terminal half of pp60c-src. These mutations caused distinct changes in the biochemical properties of the c-src gene products and in the properties of cells infected with retroviruses carrying these mutant c-src genes. Cells expressing the c-srcNX protein, which contains a deletion of amino acids 15 to 89, displayed a refractile, spindle-shaped morphology, formed intermediate-sized, tightly packed colonies in soft agar, and contained elevated levels of cellular phosphotyrosine-containing proteins. Thus, deletion of amino acids 15 to 89 can activate the kinase activity and transforming potential of the c-src gene product. Deletion of amino acids 112 to 225, however, did not increase the kinase activity or transforming ability of pp60c-src; indeed, deletion of these sequences in c-srcHP suppressed phenotypic alterations induced by pp60c-src. Cells expressing the c-srcNP or c-srcBS gene products (containing deletions of amino acids 15 to 225 and 55 to 169, respectively) displayed a fusiform, refractile morphology and formed diffuse colonies in soft agar; the mutant proteins displayed an increased in vitro protein-tyrosine kinase activity. However, only a few cellular proteins contained elevated levels of phosphotyrosine in vivo. Thus, deletions downstream of amino acid 89 severely restricted the ability of c-src to phosphorylate cellular substrates in vivo without affecting the intrinsic tyrosine kinase activity of the c-src gene product. These results suggest the existence of at least two modulatory regions within the amino-terminal half of pp60c-src that are important for the regulation of tyrosine kinase activity and for the interaction of pp60c-src with cellular substrates.

1989 ◽  
Vol 9 (3) ◽  
pp. 1109-1119 ◽  
Author(s):  
S P Nemeth ◽  
L G Fox ◽  
M DeMarco ◽  
J S Brugge

To examine how amino acid sequences outside of the catalytic domain of pp60c-src influence the functional activity of this protein, we have introduced deletion mutations within the amino-terminal half of pp60c-src. These mutations caused distinct changes in the biochemical properties of the c-src gene products and in the properties of cells infected with retroviruses carrying these mutant c-src genes. Cells expressing the c-srcNX protein, which contains a deletion of amino acids 15 to 89, displayed a refractile, spindle-shaped morphology, formed intermediate-sized, tightly packed colonies in soft agar, and contained elevated levels of cellular phosphotyrosine-containing proteins. Thus, deletion of amino acids 15 to 89 can activate the kinase activity and transforming potential of the c-src gene product. Deletion of amino acids 112 to 225, however, did not increase the kinase activity or transforming ability of pp60c-src; indeed, deletion of these sequences in c-srcHP suppressed phenotypic alterations induced by pp60c-src. Cells expressing the c-srcNP or c-srcBS gene products (containing deletions of amino acids 15 to 225 and 55 to 169, respectively) displayed a fusiform, refractile morphology and formed diffuse colonies in soft agar; the mutant proteins displayed an increased in vitro protein-tyrosine kinase activity. However, only a few cellular proteins contained elevated levels of phosphotyrosine in vivo. Thus, deletions downstream of amino acid 89 severely restricted the ability of c-src to phosphorylate cellular substrates in vivo without affecting the intrinsic tyrosine kinase activity of the c-src gene product. These results suggest the existence of at least two modulatory regions within the amino-terminal half of pp60c-src that are important for the regulation of tyrosine kinase activity and for the interaction of pp60c-src with cellular substrates.


1991 ◽  
Vol 11 (3) ◽  
pp. 1553-1565 ◽  
Author(s):  
J R McWhirter ◽  
J Y Wang

Chronic myelogenous leukemia and one type of acute lymphoblastic leukemia are characterized by a 9;22 chronosome translocation in which 5' sequences of the bcr gene become fused to the c-abl proto-oncogene. The resulting chimeric genes encode bcr/abl fusion proteins which have deregulated tyrosine kinase activity and appear to play an important role in induction of these leukemias. A series of bcr/abl genes were constructed in which nested deletions of the bcr gene were fused to the c-abl gene. The fusion proteins encoded by these genes were assayed for autophosphorylation in vivo and for differences in subcellular localization. Our results demonstrate that bcr sequences activate two functions of c-abl; the tyrosine kinase activity and a previously undescribed microfilament-binding function. Two regions of bcr which activate these functions to different degrees have been mapped: amino acids 1 to 63 were strongly activating and amino acids 64 to 509 were weakly activating. The tyrosine kinase and microfilament-binding functions were not interdependent, as a kinase defective bcr/abl mutant still associated with actin filaments and a bcr/abl mutant lacking actin association still had deregulated kinase activity. Modification of actin filament functions by the bcr/abl tyrosine kinase may be an important event in leukemogenesis.


1985 ◽  
Vol 5 (11) ◽  
pp. 3116-3123
Author(s):  
J B Konopka ◽  
O N Witte

The v-abl transforming protein P160v-abl and the P210c-abl gene product of the translocated c-abl gene in Philadelphia chromosome-positive chronic myelogenous leukemia cells have tyrosine-specific protein kinase activity. Under similar assay conditions the normal c-abl gene products, murine P150c-abl and human P145c-abl, lacked detectable kinase activity. Reaction conditions were modified to identify conditions which would permit the detection of c-abl tyrosine kinase activity. It was found that the Formalin-fixed Staphylococcus aureus formerly used for immunoprecipitation inhibits in vitro abl kinase activity. In addition, the sodium dodecyl sulfate and deoxycholate detergents formerly used in the cell lysis buffer were found to decrease recovered abl kinase activity. The discovery of assay conditions for c-abl kinase activity now makes it possible to compare P150c-abl and P145c-abl kinase activity with the altered abl proteins P160v-abl and P210c-abl. Although all of the abl proteins have in vitro tyrosine kinase activity, they differ in the way they utilize themselves as substrates in vitro. Comparison of in vitro and in vivo tyrosine phosphorylation sites of the abl proteins suggests that they function differently in vivo. The development of c-abl kinase assay conditions should be useful in elucidating c-abl function.


1985 ◽  
Vol 5 (11) ◽  
pp. 3116-3123 ◽  
Author(s):  
J B Konopka ◽  
O N Witte

The v-abl transforming protein P160v-abl and the P210c-abl gene product of the translocated c-abl gene in Philadelphia chromosome-positive chronic myelogenous leukemia cells have tyrosine-specific protein kinase activity. Under similar assay conditions the normal c-abl gene products, murine P150c-abl and human P145c-abl, lacked detectable kinase activity. Reaction conditions were modified to identify conditions which would permit the detection of c-abl tyrosine kinase activity. It was found that the Formalin-fixed Staphylococcus aureus formerly used for immunoprecipitation inhibits in vitro abl kinase activity. In addition, the sodium dodecyl sulfate and deoxycholate detergents formerly used in the cell lysis buffer were found to decrease recovered abl kinase activity. The discovery of assay conditions for c-abl kinase activity now makes it possible to compare P150c-abl and P145c-abl kinase activity with the altered abl proteins P160v-abl and P210c-abl. Although all of the abl proteins have in vitro tyrosine kinase activity, they differ in the way they utilize themselves as substrates in vitro. Comparison of in vitro and in vivo tyrosine phosphorylation sites of the abl proteins suggests that they function differently in vivo. The development of c-abl kinase assay conditions should be useful in elucidating c-abl function.


1985 ◽  
Vol 5 (10) ◽  
pp. 2789-2795 ◽  
Author(s):  
F R Cross ◽  
E A Garber ◽  
H Hanafusa

We have constructed deletions within the region of cloned Rous sarcoma virus DNA coding for the N-terminal 30 kilodaltons of p60src. Infectious virus was recovered after transfection. Deletions of amino acids 15 to 149, 15 to 169, or 149 to 169 attenuated but did not abolish transforming activity, as assayed by focus formation and anchorage-independent growth. These deletions also had only slight effects on the tyrosine kinase activity of the mutant src protein. Deletion of amino acids 169 to 264 or 15 to 264 completely abolished transforming activity, and src kinase activity was reduced at least 10-fold. However, these mutant viruses generated low levels of transforming virus by recombination with the cellular src gene. The results suggest that as well as previously identified functional domains for p60src myristylation and membrane binding (amino acids 1 to 14) and tyrosine kinase activity (amino acids 250 to 526), additional N-terminal sequences (particularly amino acids 82 to 169) can influence the transforming activity of the src protein.


1991 ◽  
Vol 11 (3) ◽  
pp. 1553-1565
Author(s):  
J R McWhirter ◽  
J Y Wang

Chronic myelogenous leukemia and one type of acute lymphoblastic leukemia are characterized by a 9;22 chronosome translocation in which 5' sequences of the bcr gene become fused to the c-abl proto-oncogene. The resulting chimeric genes encode bcr/abl fusion proteins which have deregulated tyrosine kinase activity and appear to play an important role in induction of these leukemias. A series of bcr/abl genes were constructed in which nested deletions of the bcr gene were fused to the c-abl gene. The fusion proteins encoded by these genes were assayed for autophosphorylation in vivo and for differences in subcellular localization. Our results demonstrate that bcr sequences activate two functions of c-abl; the tyrosine kinase activity and a previously undescribed microfilament-binding function. Two regions of bcr which activate these functions to different degrees have been mapped: amino acids 1 to 63 were strongly activating and amino acids 64 to 509 were weakly activating. The tyrosine kinase and microfilament-binding functions were not interdependent, as a kinase defective bcr/abl mutant still associated with actin filaments and a bcr/abl mutant lacking actin association still had deregulated kinase activity. Modification of actin filament functions by the bcr/abl tyrosine kinase may be an important event in leukemogenesis.


1985 ◽  
Vol 5 (10) ◽  
pp. 2789-2795
Author(s):  
F R Cross ◽  
E A Garber ◽  
H Hanafusa

We have constructed deletions within the region of cloned Rous sarcoma virus DNA coding for the N-terminal 30 kilodaltons of p60src. Infectious virus was recovered after transfection. Deletions of amino acids 15 to 149, 15 to 169, or 149 to 169 attenuated but did not abolish transforming activity, as assayed by focus formation and anchorage-independent growth. These deletions also had only slight effects on the tyrosine kinase activity of the mutant src protein. Deletion of amino acids 169 to 264 or 15 to 264 completely abolished transforming activity, and src kinase activity was reduced at least 10-fold. However, these mutant viruses generated low levels of transforming virus by recombination with the cellular src gene. The results suggest that as well as previously identified functional domains for p60src myristylation and membrane binding (amino acids 1 to 14) and tyrosine kinase activity (amino acids 250 to 526), additional N-terminal sequences (particularly amino acids 82 to 169) can influence the transforming activity of the src protein.


1988 ◽  
Vol 263 (2) ◽  
pp. 988-993 ◽  
Author(s):  
S R Coughlin ◽  
P J Barr ◽  
L S Cousens ◽  
L J Fretto ◽  
L T Williams

1989 ◽  
Vol 9 (6) ◽  
pp. 2493-2499
Author(s):  
M Fujii ◽  
D Shalloway ◽  
I M Verma

A promoter of the nuclear proto-oncogene fos was activated by cotransfection with the viral src gene. Ability to transactivate the c-fos promoter was dependent on tyrosine kinase activity, because (i) src mutants which have reduced tyrosine kinase activity due to mutation of Tyr-416 to Phe showed lower promoter activation, (ii) pp60c-src mutants which have increased tyrosine kinase activity due to mutation of Tyr-527 to Phe also augmented c-fos promoter induction, and (iii) mutation in the ATP-binding site of pp60v-src strongly suppressed c-fos promoter activation. Tyrosine kinase activity alone, however, was not sufficient for promoter activation, because of pp60v-src mutant which lacked its myristylation site and consequently membrane association showed no increased c-fos promoter activation. Both the tyrosine kinase- and membrane-association-defective mutants were also unable to induce transformation. Therefore, phosphorylation of membrane-associated substrates appears to be required for both gene expression and cellular transformation by the src protein. Two regions of the c-fos promoter located between positions -362 and -324 and positions -323 and -294 were responsive to src stimulation. We believe that protein tyrosine phosphorylation represents an important step of signal transduction from the membrane to the nucleus.


1984 ◽  
Vol 4 (8) ◽  
pp. 1508-1514
Author(s):  
A W Stoker ◽  
P J Enrietto ◽  
J A Wyke

Four temperature-sensitive (ts) Rous sarcoma virus src gene mutants with lesions in different parts of the gene represent three classes of alteration in pp60src. These classes are composed of mutants with (i) heat-labile protein kinase activities both in vitro and in vivo (tsLA27 and tsLA29), (ii) heat-labile kinases in vivo but not in vitro (tsLA33), and (iii) neither in vivo nor in vitro heat-labile kinases (tsLA32). The latter class indicates the existence of structural or functional pp60src domains that are required for transformation but do not grossly affect tyrosine kinase activity.


Sign in / Sign up

Export Citation Format

Share Document