tyrosine kinase activity
Recently Published Documents


TOTAL DOCUMENTS

952
(FIVE YEARS 23)

H-INDEX

82
(FIVE YEARS 2)

2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Nikita M. Patel ◽  
Filipe R. M. B. Oliveira ◽  
Hanna Pillmann Ramos ◽  
Eleonora Aimaretti ◽  
Gustavo Ferreira Alves ◽  
...  

2021 ◽  
Author(s):  
Naoki Yamamoto ◽  
Jiro Kikuchi ◽  
Yusuke Furukawa ◽  
Naoya Shibayama

We report expression and purification of a FLT3 protein with ITD mutation (FLT3-ITD) with a steady tyrosine kinase activity using a silkworm-baculovirus system, and its application as a fast screening system of tyrosine kinase inhibitors. The FLT3-ITD protein was expressed in Bombyx mori L. pupae infected by gene-modified nucleopolyhedrovirus, and was purified as an active state. We performed an inhibition assay using 17 potential kinase inhibitors, and succeeded in identifying two potent inhibitors for FLT3-ITD. The result has paved the way for screening FLT3-ITD inhibitors in a fast and easy manner, and also for structural studies.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4346-4346
Author(s):  
Afsar Ali Mian ◽  
Hadiqa Raees ◽  
Sujjawal Ahmad ◽  
Oliver Ottmann ◽  
El-Nasir M A Lalani

Abstract Introduction: Chronic myeloid leukemia (CML) and 30% of adult acute lymphatic leukemia (ALL) are characterized by the Philadelphia chromosome (Ph +), having a (9;22) chromosomal translocation. The BCR-ABL1 fusion protein is the hallmark of Ph + leukemia. BCR-ABL1 is characterized by constitutively activated ABL1 tyrosine kinase activity that determines its transformation potential. Tyrosine kinase inhibitors (TKI) have greatly improved the overall prognosis of these diseases. However, unsatisfactory responses in advanced disease stages, resistance and long-term tolerability of BCR-ABL1 inhibitors represent major clinical problems. The most important resistance mechanism against TKIs is the acquisition of point mutations within the BCR-ABL1 kinase domain that impair drug binding, restoring the oncoprotein's constitutively active tyrosine kinase activity. The selection of leukemic clones driven by BCR-ABL1 harboring point mutations, such as the E255K, Y253F/H (P-loop), H396R (activation loop) or the T315I (gatekeeper). Second- and third generation TKIs such as nilotinib, dasatinib, and ponatinib effectively overcome point mutation-mediated resistance. Ponatinib is the only U.S. Food and Drug Administration approved TKI with activity against all known BCR-ABL1 point mutations, including BCR-ABL1-T315I. However, the emergence of compound mutations (two mutations within the same BCR-ABL1 allele) has been linked to resistance to all approved TKIs, including ponatinib, posing a clinical challenge with limited treatment options. The anti-cancer agent arsenic trioxide (ATO) has been used to treat patients with acute promyelocytic leukemia (APL). APL patients respond very well to ATO therapy and achieve complete remission, possibly through induction of apoptosis and differentiation. In addition, it has been demonstrated that combined treatment of ATO with interferon or nilotinib significantly suppressed cell proliferation. However, the potential effects of ATO on BCR-ABL1 mutations and especially on compound mutation is not apparent. This study aimed to investigate the role of ATO in BCR-ABL1 resistant mutations, including compound mutation in Ph + leukemias. Methods: We undertook preclinical evaluation of ATO and compared it with approved TKIs e.g. imatinib, nilotinib, dasatinib, ponatinib and ABL inhibitor asciminib, in vitro models of CML and primary patient-derived long term cultures (PD-LTC) of Ph + ALL patients with or without mutation. The effects on mutational resistance were investigated in Ba/F3 cells expressing BCR-ABL1 with T315I mutation and T315I-E255K mutation. For non-mutational resistance, we used PD-LTCs from Ph + ALL patients with different levels of non-mutational drug resistance. Cell proliferation was assessed by XTT. Results: ATO efficiently inhibited the growth of all PD-LTCs in cellular assays at dosages of 200-500nM. It also suppressed the growth of Ph + PD-LTC with non- mutational resistance (BV) and the BCR-ABL1-T315I positive PD-LTC (KO) in this dosage range. In all modelsWe treated Ba/F3 cells expressing native BCR-ABL1, BCR-ABL1-T315I mutation and BCR-ABL1-T315I-E255K (compound mutation) with increasing concentrations of imatinib (250, 500 and 1000nM), nilotinib (100, 200 and 400nM), dasatinib (10, 25 and 50nM), ponatinib (10, 50 and 100nM), asciminib) (ABL allosteric inhibitor) (5, 10 and 20nM) and ATO (0.5, 1.0 and 2.0 µM). We found that all the inhibitors significantly inhibited the proliferation of Ba/F3 cells expressing wild type BCR-ABL1 in a dose-dependent manner. In contrast, the growth of Ba/F3 cells expressing BCR-ABL1-T315I was inhibited by increasing concentration of ponatinib, asciminib and ATO. ATO potently inhibited the most challenging mutation (T315I-E255K) with a clinically relevant concentration (IC50 250nM). All approved ABL kinase inhibitors (AKIs) and allosteric inhibitors like asciminib could not inhibit the growth of Ba/F3 cells expressing BCR-ABL1 compound mutation. Conclusions: Our findings indicate that ATO significantly suppressed the proliferation of cells expressing non-mutated BCR-ABL1, single and compound mutated BCR-ABL1. These results support including ATO in treating patients with Ph + leukemias having BCR-ABL1 resistant single or compound mutati Disclosures Ottmann: Novartis: Honoraria; Amgen: Honoraria, Research Funding; Celgene/BMS: Honoraria, Research Funding; Fusion: Honoraria; Incyte: Honoraria, Research Funding.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Guoyun Jiang ◽  
Zhenglan Huang ◽  
Ying Yuan ◽  
Kun Tao ◽  
Wenli Feng

Abstract Background The pathogenesis of chronic myeloid leukemia (CML) is the formation of the BCR/ABL protein, which is encoded by the bcr/abl fusion gene, possessing abnormal tyrosine kinase activity. Despite the wide application of tyrosine kinase inhibitors (TKIs) in CML treatment, TKIs drug resistance or intolerance limits their further usage in a subset of patients. Furthermore, TKIs inhibit the tyrosine kinase activity of the BCR/ABL oncoprotein while failing to eliminate the pathologenic oncoprotein. To develop alternative strategies for CML treatment using therapeutic antibodies, and to address the issue that antibodies cannot pass through cell membranes, we have established a novel intracellular delivery of anti-BCR/ABL antibodies, which serves as a prerequisite for CML therapy. Methods Anti-BCR/ABL antibodies were encapsulated in poly(d, l-lactide-co-glycolide) nanoparticles (PLGA NPs) by a double emulsion method, and transferrin was labeled on the surface of the nanoparticles (Ab@Tf-Cou6-PLGA NPs). The characteristics of nanoparticles were measured by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Cellular uptake of nanoparticles was measured by flow cytometry (FCM). The effect of nanoparticles on the apoptosis and proliferation of CML cells was testified by FCM and CCK-8 assay. In addition, the anti-cancer impact of nanoparticles was evaluated in mouse models of CML. Results The results demonstrated that the Ab@Tf-Cou6-PLGA NPs functioned as an intracellular deliverer of antibodies, and exhibited an excellent effect on degrading BCR/ABL oncoprotein in CML cells via the Trim-Away pathway. Treatment with Ab@Tf-Cou6-PLGA NPs inhibited the proliferation and induced the apoptosis of CML cells in vitro as well as impaired the oncogenesis ability of CML cells in vivo. Conclusions In conclusion, our study indicated that this approach achieved safe and efficient intracellular delivery of antibodies and degraded BCR/ABL oncoprotein via the Trim-Away pathway, which provides a promising therapeutic strategy for CML patients, particularly those with TKI resistance.


2021 ◽  
Author(s):  
Craig E. Barcus ◽  
Priscilla Y. Hwang ◽  
Vasilios Morikis ◽  
Audrey Brenot ◽  
Patrick Pence ◽  
...  

Both tumor cell-intrinsic signals and tumor cell-extrinsic signals from cells within the tumor microenvironment influence tumor cell dissemination and metastasis. The fibrillar collagen receptor tyrosine kinase discoidin domain receptor 2, DDR2, is essential for breast cancer metastasis in mouse models, and high expression of DDR2 in tumor and tumor stromal cells is strongly associated with poorer clinical outcomes. DDR2 tyrosine kinase activity was hypothesized to be required for DDR2's metastatic activity, however, inhibition of DDR2 tyrosine kinase activity, along with other RTKs, has failed to provide clinically relevant responses in metastatic patients. Here, we show that tyrosine kinase-activity independent action of DDR2 in tumor cells can support Matrigel invasion and in vivo metastasis. Paracrine actions of DDR2 in tumor cells and CAFs also support tumor invasion, migration, and lung colonization in vivo. These data suggest that tyrosine kinase independent function of DDR2 could explain failures of TKI treatment in metastatic breast cancer patients and highlight the need for alternate therapeutic strategies that inhibit both tyrosine kinase-dependent and independent actions of RTKs in the treatment of breast cancer.


2021 ◽  
pp. ji2001105
Author(s):  
Paweł Borowicz ◽  
Vibeke Sundvold ◽  
Hanna Chan ◽  
Greger Abrahamsen ◽  
Hanna Kjelstrup ◽  
...  

Biosensors ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 240
Author(s):  
Lan-Yi Wei ◽  
Wei Lin ◽  
Bey-Fen Leo ◽  
Lik-Voon Kiew ◽  
Chia-Ching Chang ◽  
...  

A miniature tyrosinase-based electrochemical sensing platform for label-free detection of protein tyrosine kinase activity was developed in this study. The developed miniature sensing platform can detect the substrate peptides for tyrosine kinases, such as c-Src, Hck and Her2, in a low sample volume (1–2 μL). The developed sensing platform exhibited a high reproducibility for repetitive measurement with an RSD (relative standard deviation) of 6.6%. The developed sensing platform can detect the Hck and Her2 in a linear range of 1–200 U/mL with the detection limit of 1 U/mL. The sensing platform was also effective in assessing the specificity and efficacies of the inhibitors for protein tyrosine kinases. This is demonstrated by the detection of significant inhibition of Hck (~88.1%, but not Her2) by the Src inhibitor 1, an inhibitor for Src family kinases, as well as the significant inhibition of Her2 (~91%, but not Hck) by CP-724714 through the platform. These results suggest the potential of the developed miniature sensing platform as an effective tool for detecting different protein tyrosine kinase activity and for accessing the inhibitory effect of various inhibitors to these kinases.


2021 ◽  
Author(s):  
Enrico Bracco ◽  
M. Shahzad Ali ◽  
Stefano Magnati ◽  
Giuseppe Saglio

The aberrant tyrosine phosphorylation, either due to constitutive tyrosine kinases (TKs) or to inactivation of protein tyrosine phosphatases (PTPs), is a widespread feature of many cancerous cells. The BCR-ABL fusion protein, which arises from the Philadelphia chromosome, is a molecular distinct and peculiar trait of some kind of leukemia, namely Chronic Myeloid and Acute Lymphoblastic Leukemia, and displays constitutive tyrosine kinase activity. In the chapter, we will highlight the milestones that had led to the identification of the BCR-ABL fusion gene and its role as the only molecular pathogenic event sufficient to elicit and sustain chronic myeloid leukemia. We will also discuss the effort made to unveil the molecular mechanisms of action of the chimeric tyrosine kinase that eventually lead to aberrant cell proliferation and impaired cell-death. Furthermore, we will also review the lesson learned from the selective inhibition of BCR-ABL which currently represent a breakthrough in the treatment of several tumors characterized by defective tyrosine kinase activity.


Author(s):  
meryeme abddaoui ◽  
ahmed faleh ◽  
imane tlemçani ◽  
sara ben miloud ◽  
moncef amrani hassani

Pediatric chronic myeloid leukemia is a rare entity (2-5% of childhood leukemias) classified as a myeloproliferative neoplasia characterized by the presence of the BCR-ABL fusion gene, the oncogenic translocation product (9; 22) responsible for the disease through its deregulated tyrosine kinase activity.


Sign in / Sign up

Export Citation Format

Share Document