scholarly journals N-terminal deletions in Rous sarcoma virus p60src: effects on tyrosine kinase and biological activities and on recombination in tissue culture with the cellular src gene.

1985 ◽  
Vol 5 (10) ◽  
pp. 2789-2795 ◽  
Author(s):  
F R Cross ◽  
E A Garber ◽  
H Hanafusa

We have constructed deletions within the region of cloned Rous sarcoma virus DNA coding for the N-terminal 30 kilodaltons of p60src. Infectious virus was recovered after transfection. Deletions of amino acids 15 to 149, 15 to 169, or 149 to 169 attenuated but did not abolish transforming activity, as assayed by focus formation and anchorage-independent growth. These deletions also had only slight effects on the tyrosine kinase activity of the mutant src protein. Deletion of amino acids 169 to 264 or 15 to 264 completely abolished transforming activity, and src kinase activity was reduced at least 10-fold. However, these mutant viruses generated low levels of transforming virus by recombination with the cellular src gene. The results suggest that as well as previously identified functional domains for p60src myristylation and membrane binding (amino acids 1 to 14) and tyrosine kinase activity (amino acids 250 to 526), additional N-terminal sequences (particularly amino acids 82 to 169) can influence the transforming activity of the src protein.

1985 ◽  
Vol 5 (10) ◽  
pp. 2789-2795
Author(s):  
F R Cross ◽  
E A Garber ◽  
H Hanafusa

We have constructed deletions within the region of cloned Rous sarcoma virus DNA coding for the N-terminal 30 kilodaltons of p60src. Infectious virus was recovered after transfection. Deletions of amino acids 15 to 149, 15 to 169, or 149 to 169 attenuated but did not abolish transforming activity, as assayed by focus formation and anchorage-independent growth. These deletions also had only slight effects on the tyrosine kinase activity of the mutant src protein. Deletion of amino acids 169 to 264 or 15 to 264 completely abolished transforming activity, and src kinase activity was reduced at least 10-fold. However, these mutant viruses generated low levels of transforming virus by recombination with the cellular src gene. The results suggest that as well as previously identified functional domains for p60src myristylation and membrane binding (amino acids 1 to 14) and tyrosine kinase activity (amino acids 250 to 526), additional N-terminal sequences (particularly amino acids 82 to 169) can influence the transforming activity of the src protein.


1984 ◽  
Vol 4 (8) ◽  
pp. 1508-1514
Author(s):  
A W Stoker ◽  
P J Enrietto ◽  
J A Wyke

Four temperature-sensitive (ts) Rous sarcoma virus src gene mutants with lesions in different parts of the gene represent three classes of alteration in pp60src. These classes are composed of mutants with (i) heat-labile protein kinase activities both in vitro and in vivo (tsLA27 and tsLA29), (ii) heat-labile kinases in vivo but not in vitro (tsLA33), and (iii) neither in vivo nor in vitro heat-labile kinases (tsLA32). The latter class indicates the existence of structural or functional pp60src domains that are required for transformation but do not grossly affect tyrosine kinase activity.


1984 ◽  
Vol 4 (8) ◽  
pp. 1508-1514 ◽  
Author(s):  
A W Stoker ◽  
P J Enrietto ◽  
J A Wyke

Four temperature-sensitive (ts) Rous sarcoma virus src gene mutants with lesions in different parts of the gene represent three classes of alteration in pp60src. These classes are composed of mutants with (i) heat-labile protein kinase activities both in vitro and in vivo (tsLA27 and tsLA29), (ii) heat-labile kinases in vivo but not in vitro (tsLA33), and (iii) neither in vivo nor in vitro heat-labile kinases (tsLA32). The latter class indicates the existence of structural or functional pp60src domains that are required for transformation but do not grossly affect tyrosine kinase activity.


1988 ◽  
Vol 8 (6) ◽  
pp. 2435-2441 ◽  
Author(s):  
J M Kaplan ◽  
G Mardon ◽  
J M Bishop ◽  
H E Varmus

The transforming protein of Rous sarcoma virus, pp60v-src, is covalently coupled to myristic acid by an amide linkage to glycine 2. Myristylation promotes the association of pp60v-src with cellular membranes, and this subcellular location is essential for transforming activity. The findings presented here, in conjunction with the previous reports of others, imply that the seventh amino acid encoded by v-src might be important in the myristylation reaction. Replacement of lysine 7 by asparagine greatly reduced the myristylation, membrane association, and transforming activity of pp60v-src. In contrast, substitution of arginine at residue 7 had no effect on any of these properties of pp60v-src. Addition of amino acids 1 to 7 encoded by v-src was sufficient to cause myristylation of a src-pyruvate kinase fusion protein. We conclude that the recognition sequence for myristylation of pp60v-src comprises amino acids 1 to 7 and that lysine 7 is a critical component of this sequence.


1988 ◽  
Vol 8 (6) ◽  
pp. 2435-2441
Author(s):  
J M Kaplan ◽  
G Mardon ◽  
J M Bishop ◽  
H E Varmus

The transforming protein of Rous sarcoma virus, pp60v-src, is covalently coupled to myristic acid by an amide linkage to glycine 2. Myristylation promotes the association of pp60v-src with cellular membranes, and this subcellular location is essential for transforming activity. The findings presented here, in conjunction with the previous reports of others, imply that the seventh amino acid encoded by v-src might be important in the myristylation reaction. Replacement of lysine 7 by asparagine greatly reduced the myristylation, membrane association, and transforming activity of pp60v-src. In contrast, substitution of arginine at residue 7 had no effect on any of these properties of pp60v-src. Addition of amino acids 1 to 7 encoded by v-src was sufficient to cause myristylation of a src-pyruvate kinase fusion protein. We conclude that the recognition sequence for myristylation of pp60v-src comprises amino acids 1 to 7 and that lysine 7 is a critical component of this sequence.


1984 ◽  
Vol 4 (6) ◽  
pp. 1179-1181
Author(s):  
A Barnekow ◽  
M Schartl

Serum from Rous sarcoma virus tumor-bearing rabbits immunoprecipitated from extracts of the freshwater sponge Spongilla lacustris a tyrosine-specific protein kinase with characteristics similar to the chicken pp60c-src kinase activity. An immune competition assay confirmed the relationship between the protein from sponges and viral pp60v-src.


1985 ◽  
Vol 5 (10) ◽  
pp. 2856-2859
Author(s):  
H Iba ◽  
R Jove ◽  
H Hanafusa

Expression of p60v-src of Rous sarcoma virus in cultured chicken embryo neuroretinal cells was previously shown to result in the transformation and sustained proliferation of normally quiescent cell populations. We show here that Rous sarcoma virus variants that encode p60c-src, the cellular homolog of p60v-src, lack the ability to induce morphological transformation and cell proliferation of cultured neuroretinal cells. Neuroretinal cells infected with c-src-containing viruses, however, possess no less p60 protein kinase activity assayed in the immune complex than those infected with the transformation-defective Rous sarcoma virus mutants PA101 or PA104, which do stimulate the growth of these cells.


1984 ◽  
Vol 4 (5) ◽  
pp. 862-866
Author(s):  
D L Bryant ◽  
J T Parsons

Bisulfite mutagenesis techniques have been used to introduce single-point mutations within a region of the Rous sarcoma virus src gene defined by a BglI restriction endonuclease cleavage site. The mutants of Rous sarcoma virus that are produced by these techniques encode src proteins which contain single amino acid changes within a highly conserved amino acid sequence encompassing residues 430 to 433. DNA from the mutants CHpm26 ( Ala430 to Val), CHpm9 ( Pro431 to Ser), CHpm6 ( Glu432 to Lys), and CHpm65 ( Ala433 to Thr) each failed to transform chicken cells upon transfection, whereas DNA from CHpm59 (a third base alteration in the codon for Glu432 ) readily transformed chicken cells. Analysis of immune complexes containing the altered src proteins indicates that these proteins have decreased tyrosine protein kinase activity in vitro. In vivo labeling of cells infected with the mutant virus revealed diminished levels of the tyrosine-phosphorylated 34,000-molecular-weight protein. These data indicate that mutations within the sequence Ala430 - Pro431 - Glu432 - Ala433 lead to alterations in pp60src-specific tyrosine protein kinase activity and a concomitant loss of transforming potential of the mutant virus.


Sign in / Sign up

Export Citation Format

Share Document