scholarly journals Aerobic Anoxygenic Phototrophic Bacteria

1998 ◽  
Vol 62 (3) ◽  
pp. 695-724 ◽  
Author(s):  
Vladimir V. Yurkov ◽  
J. Thomas Beatty

SUMMARY The aerobic anoxygenic phototrophic bacteria are a relatively recently discovered bacterial group. Although taxonomically and phylogenetically heterogeneous, these bacteria share the following distinguishing features: the presence of bacteriochlorophyll a incorporated into reaction center and light-harvesting complexes, low levels of the photosynthetic unit in cells, an abundance of carotenoids, a strong inhibition by light of bacteriochlorophyll synthesis, and the inability to grow photosynthetically under anaerobic conditions. Aerobic anoxygenic phototrophic bacteria are classified in two marine (Erythrobacter and Roseobacter) and six freshwater (Acidiphilium, Erythromicrobium, Erythromonas, Porphyrobacter, Roseococcus, and Sandaracinobacter) genera, which phylogenetically belong to the α-1, α-3, and α-4 subclasses of the class Proteobacteria. Despite this phylogenetic information, the evolution and ancestry of their photosynthetic properties are unclear. We discuss several current proposals for the evolutionary origin of aerobic phototrophic bacteria. The closest phylogenetic relatives of aerobic phototrophic bacteria include facultatively anaerobic purple nonsulfur phototrophic bacteria. Since these two bacterial groups share many properties, yet have significant differences, we compare and contrast their physiology, with an emphasis on morphology and photosynthetic and other metabolic processes.

Water ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 150
Author(s):  
Yuki Sato-Takabe ◽  
Setsuko Hirose ◽  
Tomoyuki Hori ◽  
Satoshi Hanada

Aerobic anoxygenic phototrophic bacteria (AAnPB) are widely distributed and regarded as key players driving the carbon cycle in surface water of global oceans, coastal and estuary areas and in other freshwater environments (e.g., ponds and lakes). However, the abundance and spatial distribution of AAnPB in rivers is much less well-known. Here we investigated the variation of the absolute cell abundances of the total bacteria, AAnPB and cyanobacteria, at four different sites in Tama River, Japan, and the spatial distribution (i.e., free-living or particle-attached existence form) of AAnPB at two out of the four sites using infra-red epifluorescence microscopy. Free-living cell abundances for the total bacteria, AAnPB and cyanobacteria were 1.6–3 × 105, 1.5–4.4 × 104 and <3.2 × 104 cells mL−1, respectively. The free-living AAnPB accounted for 6.1%–19.6% of the total bacterial abundance in the river. The peaks of the AAnPB and cyanobacteria abundances were found at the same site, suggesting that the AAnPB could potentially coexist with cyanobacteria. Meanwhile, the particle-attached AAnPB were observed at the two sites of the river, accounting for 52.2% of the total bacteria abundance in the particle. Our results showed the existence and aggregation form of AAnPB in the riverine environment.


Sign in / Sign up

Export Citation Format

Share Document