aerobic phototrophic bacteria
Recently Published Documents


TOTAL DOCUMENTS

9
(FIVE YEARS 0)

H-INDEX

8
(FIVE YEARS 0)

2008 ◽  
Vol 97 (3) ◽  
pp. 235-244 ◽  
Author(s):  
Christopher Rathgeber ◽  
Michael T. Lince ◽  
Jean Alric ◽  
Andrew S. Lang ◽  
Elaine Humphrey ◽  
...  

2007 ◽  
Vol 189 (7) ◽  
pp. 2906-2914 ◽  
Author(s):  
Silke Friedmann ◽  
Birgit E. Alber ◽  
Georg Fuchs

ABSTRACT The autotrophic CO2 fixation pathway (3-hydroxypropionate cycle) in Chloroflexus aurantiacus results in the fixation of two molecules of bicarbonate into one molecule of glyoxylate. Glyoxylate conversion to the CO2 acceptor molecule acetyl-coenzyme A (CoA) requires condensation with propionyl-CoA (derived from one molecule of acetyl-CoA and one molecule of CO2) to β-methylmalyl-CoA, which is converted to citramalyl-CoA. Extracts of autotrophically grown cells contained both S- and R-citramalyl-CoA lyase activities, which formed acetyl-CoA and pyruvate. Pyruvate is taken out of the cycle and used for cellular carbon biosynthesis. Both the S- and R-citramalyl-CoA lyases were up-regulated severalfold during autotrophic growth. S-Citramalyl-CoA lyase activity was found to be due to l-malyl-CoA lyase/β-methylmalyl-CoA lyase. This promiscuous enzyme is involved in the CO2 fixation pathway, forms acetyl-CoA and glyoxylate from l-malyl-CoA, and condenses glyoxylate with propionyl-CoA to β-methylmalyl-CoA. R-Citramalyl-CoA lyase was further studied. Its putative gene was expressed and the recombinant protein was purified. This new enzyme belongs to the 3-hydroxy-3-methylglutaryl-CoA lyase family and is a homodimer with 34-kDa subunits that was 10-fold stimulated by adding Mg2 or Mn2+ ions and dithioerythritol. The up-regulation under autotrophic conditions suggests that the enzyme functions in the ultimate step of the acetyl-CoA regeneration route in C. aurantiacus. Genes similar to those involved in CO2 fixation in C. aurantiacus, including an R-citramalyl-CoA lyase gene, were found in Roseiflexus sp., suggesting the operation of the 3-hydroxypropionate cycle in this bacterium. Incomplete sets of genes were found in aerobic phototrophic bacteria and in the γ-proteobacterium Congregibacter litoralis. This may indicate that part of the reactions may be involved in a different metabolic process.


2002 ◽  
Vol 40 (3) ◽  
pp. 191-204 ◽  
Author(s):  
Natalia Yurkova ◽  
Christopher Rathgeber ◽  
Jolantha Swiderski ◽  
Erko Stackebrandt ◽  
J.Thomas Beatty ◽  
...  

2002 ◽  
Vol 68 (4) ◽  
pp. 1665-1673 ◽  
Author(s):  
Tetsushi Suyama ◽  
Toru Shigematsu ◽  
Toshihiko Suzuki ◽  
Yutaka Tokiwa ◽  
Takahiro Kanagawa ◽  
...  

ABSTRACT Production of a photosynthetic apparatus in Roseateles depolymerans 61A, a recently discovered freshwater β-Proteobacterium showing characteristics of aerobic phototrophic bacteria, was observed when the cells were subjected to a sudden decrease in carbon sources (e.g., when cells grown with 0.1 to 0.4% Casamino Acids were diluted or transferred into medium containing ≤0.04% Casamino Acids). Accumulation of bacteriochlorophyll (BChl) a was observed in the presence of oxygen and was enhanced under semiaerobic conditions (2% oxygen) but was reduced in the presence of light. Similarly to what has been reported regarding some aerobic phototrophic bacteria belonging to the α subclass of the Proteobacteria, viability of the cells in the carbon source-free medium was prolonged under aerobic-light (10 W m−2) conditions, possibly due to photosynthetic energy conversion, but was not prolonged under aerobic-dark conditions. The puf operon, which encodes most of the apoproteins of light-harvesting and reaction center complexes, was sequenced, and the effect of changes in Casamino Acids concentrations, oxygen, and light on its expression was estimated by the accumulation of its mRNA. The expression of the puf operon was induced by the decrease in carbon sources, similarly to what was observed for the accumulation of BChl a under aerobic and semiaerobic conditions (≥0.2% O2), and was reduced in the presence of light. Transcription of the R. depolymerans puf operon is considered to be controlled by changes in carbon nutrients in addition to oxygen tension and light intensity.


1998 ◽  
Vol 62 (3) ◽  
pp. 695-724 ◽  
Author(s):  
Vladimir V. Yurkov ◽  
J. Thomas Beatty

SUMMARY The aerobic anoxygenic phototrophic bacteria are a relatively recently discovered bacterial group. Although taxonomically and phylogenetically heterogeneous, these bacteria share the following distinguishing features: the presence of bacteriochlorophyll a incorporated into reaction center and light-harvesting complexes, low levels of the photosynthetic unit in cells, an abundance of carotenoids, a strong inhibition by light of bacteriochlorophyll synthesis, and the inability to grow photosynthetically under anaerobic conditions. Aerobic anoxygenic phototrophic bacteria are classified in two marine (Erythrobacter and Roseobacter) and six freshwater (Acidiphilium, Erythromicrobium, Erythromonas, Porphyrobacter, Roseococcus, and Sandaracinobacter) genera, which phylogenetically belong to the α-1, α-3, and α-4 subclasses of the class Proteobacteria. Despite this phylogenetic information, the evolution and ancestry of their photosynthetic properties are unclear. We discuss several current proposals for the evolutionary origin of aerobic phototrophic bacteria. The closest phylogenetic relatives of aerobic phototrophic bacteria include facultatively anaerobic purple nonsulfur phototrophic bacteria. Since these two bacterial groups share many properties, yet have significant differences, we compare and contrast their physiology, with an emphasis on morphology and photosynthetic and other metabolic processes.


Sign in / Sign up

Export Citation Format

Share Document