scholarly journals Complete Genome Sequence of the Highly Pathogenic Strain A/Domestic Goose/Pavlodar/1/05 (H5N1) of the Avian Influenza Virus, Isolated in Kazakhstan in 2005

2020 ◽  
Vol 9 (10) ◽  
Author(s):  
Aisha Issabek ◽  
Yerbol Burashev ◽  
Olga Chervyakova ◽  
Mukhit Orynbayev ◽  
Zhailaubay Kydyrbayev ◽  
...  

Here, we present the complete genome sequence of a highly pathogenic strain of avian influenza A virus/domestic goose/Pavlodar/1/05 (H5N1) (GS/1/05), which belongs to clade 2.2. This strain of the influenza virus was isolated in northern Kazakhstan in 2005.

2012 ◽  
Vol 20 (2) ◽  
pp. 140-145 ◽  
Author(s):  
Kyu-Jun Lee ◽  
Jun-Gu Choi ◽  
Hyun-Mi Kang ◽  
Kwang-Il Kim ◽  
Choi-Kyu Park ◽  
...  

ABSTRACTOutbreaks of avian influenza A virus infection, particularly the H5N1 strains that have affected birds and some humans for the past 15 years, have highlighted the need for increased surveillance and disease control. Such measures require diagnostic tests to detect and characterize the different subtypes of influenza virus. In the current study, a simple method for producing reference avian influenza virus antisera to be used in diagnostic tests was developed. Antisera of nine avian influenza A virus neuraminidases (NA) used for NA subtyping were produced using a recombinant baculovirus. The recombinant NA (rNA) proteins were expressed in Sf9 insect cells and inoculated intramuscularly into specific-pathogen-free chickens with the ISA70 adjuvant. The NA inhibition antibody titers of the rNA antiserum were in the ranges of 5 to 8 and 6 to 9 log2units after the primary and boost immunizations, respectively. The antisera were subtype specific, showing low cross-reactivity against every other NA subtype using the conventional thiobarbituric acid NA inhibition assay. These results suggest that this simple method for producing reference NA antisera without purification may be useful for the diagnosis and surveillance of influenza virus.


2007 ◽  
Vol 13 (11) ◽  
pp. 1667-1674 ◽  
Author(s):  
Michael Lierz ◽  
Hafez M. Hafez ◽  
Robert Klopfleisch ◽  
Dörte Lüschow ◽  
Christine Prusas ◽  
...  

2016 ◽  
Vol 4 (3) ◽  
Author(s):  
Andrew M. Ramey ◽  
Andrew B. Reeves ◽  
Rebecca L. Poulson ◽  
Deborah L. Carter ◽  
Nicholas Davis-Fields ◽  
...  

We report here the complete genome sequence of a novel H14N7 subtype influenza A virus (IAV) isolated from a blue-winged teal ( Anas discors ) harvested in Texas, USA. The genomic characteristics of this IAV strain with a previously undetected subtype combination suggest recent viral evolution within the New World wild-bird IAV reservoir.


2018 ◽  
Vol 6 (18) ◽  
pp. e00369-18 ◽  
Author(s):  
Dan Li ◽  
ZhengTing Li ◽  
Zhixun Xie ◽  
Meng Li ◽  
Zhiqin Xie ◽  
...  

ABSTRACT We report here the complete genome sequence of strain H9N2, an avian influenza virus (AIV) isolated from dove in Guangxi, China. Phylogenetic analysis showed that it was a novel reassortant AIV derived from chicken, duck, and wild bird. This finding provides useful information for understanding the H9N2 subtype of AIV circulating in southern China.


2017 ◽  
Vol 5 (5) ◽  
Author(s):  
Guangyu Hou ◽  
Jinping Li ◽  
Cheng Peng ◽  
Suchun Wang ◽  
Jiming Chen ◽  
...  

ABSTRACT Here, we report the complete genome sequence of an H6N8 avian influenza virus (AIV) isolated from wild waterfowl in Poyang Lake, China, in 2016. Phylogenetic analysis showed that it was a novel reassortant AIV between domestic ducks and wild waterfowl. The finding of this study is helpful for our understanding of the ecology and the evolutionary characteristics of H6 subtypes of AIV in birds.


2010 ◽  
Vol 84 (6) ◽  
pp. 3068-3078 ◽  
Author(s):  
Mayo Ueda ◽  
Tomo Daidoji ◽  
Anariwa Du ◽  
Cheng-Song Yang ◽  
Madiha S. Ibrahim ◽  
...  

ABSTRACT In this study, we show that the highly pathogenic H5N1 avian influenza virus (AIV) (A/crow/Kyoto/53/04 and A/chicken/Egypt/CL6/07) induced apoptosis in duck embryonic fibroblasts (DEF). In contrast, apoptosis was reduced among cells infected with low-pathogenic AIVs (A/duck/HK/342/78 [H5N2], A/duck/HK/820/80 [H5N3], A/wigeon/Osaka/1/01 [H7N7], and A/turkey/Wisconsin/1/66 [H9N2]). Thus, we investigated the molecular mechanisms of apoptosis induced by H5N1-AIV infection. Caspase-dependent and -independent pathways contributed to the cytopathic effects. We further showed that, in the induction of apoptosis, the hemagglutinin of H5N1-AIV played a major role and its cleavage sequence was not critical. We also observed outer membrane permeabilization and loss of the transmembrane potential of the mitochondria of infected DEF, indicating that mitochondrial dysfunction was caused by the H5N1-AIV infection. We then analyzed Ca2+ dynamics in the infected cells and demonstrated an increase in the concentration of Ca2+ in the cytosol ([Ca2+]i) and mitochondria ([Ca2+]m) after H5N1-AIV infection. Regardless, gene expression important for regulating Ca2+ efflux from the endoplasmic reticulum did not significantly change after H5N1-AIV infection. These results suggest that extracellular Ca2+ may enter H5N1-AIV-infected cells. Indeed, EGTA, which chelates extracellular free Ca2+, significantly reduced the [Ca2+]i, [Ca2+]m, and apoptosis induced by H5N1-AIV infection. In conclusion, we identified a novel mechanism for influenza A virus-mediated cell death, which involved the acceleration of extracellular Ca2+ influx, leading to mitochondrial dysfunction and apoptosis. These findings may be useful for understanding the pathogenesis of H5N1-AIV in avian species as well as the impact of Ca2+ homeostasis on influenza A virus infection.


Sign in / Sign up

Export Citation Format

Share Document