avian influenza a virus
Recently Published Documents


TOTAL DOCUMENTS

223
(FIVE YEARS 46)

H-INDEX

39
(FIVE YEARS 4)

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12512
Author(s):  
Xiaoyi Gao ◽  
Naidi Wang ◽  
Yuhong Chen ◽  
Xiaoxue Gu ◽  
Yuanhui Huang ◽  
...  

H9N2 subtype avian influenza A virus (AIV) is a causative agent that poses serious threats to both the poultry industry and global public health. In this study, we performed active surveillance to identify H9N2 AIVs from poultry (chicken, duck, and goose) and the environment of different regions in China, and we phylogenetically characterized the sequences. AIV subtype-specific reverse transcription polymerase chain reaction (RT-PCR) showed that 5.43% (83/1529) samples were AIV positive, and 87.02% (67/77) of which were H9N2 AIVs. Phylogenetic analysis revealed that all H9N2 field viruses belonged to the Y280-like lineage, exhibiting 93.9–100% and 94.6–100% of homology in the hemagglutinin (HA) gene and 94.4–100% and 96.3–100% in the neuraminidase (NA) gene, at the nucleotide (nt) and amino acid (aa) levels, respectively. All field viruses shared relatively lower identities with vaccine strains, ranging from 89.4% to 97.7%. The aa sequence at the cleavage site (aa 333–340) in HA of all the isolated H9N2 AIVs was PSRSSRG/L, which is a characteristic of low pathogenic avian influenza virus (LPAIV). Notably, all the H9N2 field viruses harbored eight glycosylation sites, whereas a glycosylation site 218 NRT was missing and a new site 313 NCS was inserted. All field viruses had NGLMR as their receptor binding sites (RBS) at aa position 224–229, showing high conservation with many recently-isolated H9N2 strains. All H9N2 field isolates at position 226 had the aa Leucine (L), indicating their ability to bind to sialic acid (SA) α, a 2–6 receptor of mammals that poses the potential risk of transmission to humans. Our results suggest that H9N2 AIVs circulating in poultry populations that have genetic variation and the potential of infecting mammalian species are of great significance when monitoring H9N2 AIVs in China.


2021 ◽  
Author(s):  
Michelle Wille ◽  
Victoria Grillo ◽  
Silvia Ban de Gouvea Pedroso ◽  
Graham W. Burgess ◽  
Allison Crawley ◽  
...  

Most of our understanding of the ecology and evolution of avian influenza A virus (AIV) in wild birds is derived from studies conducted in the northern hemisphere on waterfowl, with a substantial bias towards dabbling ducks. However, relevant environmental conditions and patterns of avian migration and reproduction are substantially different in the southern hemisphere. Through the sequencing and analysis of 333 unique AIV genomes collected from wild birds collected over 15 years we show that Australia is a global sink for AIV diversity and not integrally linked with the Eurasian gene pool. Rather, AIV are infrequently introduced to Australia, followed by decades of isolated circulation and eventual extinction. The number of co-circulating viral lineages varies per subtype. AIV haemagglutinin (HA) subtypes that are rarely identified at duck-centric study sites (H8-12) had more detected introductions and contemporary co-circulating lineages in Australia. Combined with a lack of duck migration beyond the Australian-Papuan region, these findings suggest introductions by long-distance migratory shorebirds. In addition, we found no evidence of directional or consistent patterns in virus movement across the Australian continent. This feature corresponds to patterns of bird movement, whereby waterfowl have nomadic and erratic rainfall-dependant distributions rather than consistent intra-continental migratory routes. Finally, we detected high levels of virus gene segment reassortment, with a high diversity of AIV genome constellations across years and locations. These data, in addition to those from other studies in Africa and South America, clearly show that patterns of AIV dynamics in the Southern Hemisphere are distinct from those in the temperate north.


2021 ◽  
Author(s):  
Michelle Wille ◽  
Conny Tolf ◽  
Neus Latorre-Margalef ◽  
Ron A. M. Fouchier ◽  
Rebecca A. Halpin ◽  
...  

Avian influenza A virus (AIV) is ubiquitous in waterfowl, and detected annually at high prevalence in waterfowl during the Northern Hemipshere autumn. Some AIV subtypes are globally common in waterfowl, such as H3N8, H4N6, and H6N2, and are detected in the same populations at high frequency, annually. In order to investigate genetic features associated to the long-term maintenance of common subtypes in migratory ducks, we sequenced 248 H4 viruses isolated across 8 years (2002-2009) from Mallards (Anas platyrhynchos) sampled in southeast Sweden. Phylogenetic analyses showed that both H4 and N6 sequences fell into in three distinct lineages, structured by year of isolation. Specifically, across the eight years of the study, we observed lineage replacement, whereby a different HA lineage circulated in the population each year. Analysis of deduced amino acid sequences of the HA lineages illustrated key differences in regions of the globular head of hemagglutinin that overlap with established antigentic sites in homologous hemagglutinin H3, suggesting the possibility of antigenic differences among these HA lineages. Beyond HA, lineage replacement was common to all segments, such that novel genome constellations were detected across years. A dominant genome constellation would rapidly amplify in the duck population, followed by unlinking of gene segments as a result of reassortment within 2-3 weeks following introduction. These data help reveal the evolutionary dynamics exhibited by AIV on both annual and decadal scales in an important reservoir host.


2021 ◽  
Author(s):  
Wan-Ting He ◽  
Xin Hou ◽  
Jin Zhao ◽  
Jiumeng Sun ◽  
Haijian He ◽  
...  

Game animals are wildlife species often traded and consumed as exotic food, and are potential reservoirs for SARS-CoV and SARS-CoV-2. We performed a meta-transcriptomic analysis of 1725 game animals, representing 16 species and five mammalian orders, sampled across China. From this we identified 71 mammalian viruses, with 45 described for the first time. Eighteen viruses were considered as potentially high risk to humans and domestic animals. Civets (Paguma larvata) carried the highest number of potentially high risk viruses. We identified the transmission of Bat coronavirus HKU8 from a bat to a civet, as well as cross-species jumps of coronaviruses from bats to hedgehogs and from birds to porcupines. We similarly identified avian Influenza A virus H9N2 in civets and Asian badgers, with the latter displaying respiratory symptoms, as well as cases of likely human-to-wildlife virus transmission. These data highlight the importance of game animals as potential drivers of disease emergence.


Author(s):  
Jin Guo ◽  
Wentao Song ◽  
Xiansheng Ni ◽  
Kun Zhou ◽  
Jingwen Wu ◽  
...  

This article aims to understand the changes in the detection rates of H5, H7, and H9 subtypes of avian influenza viruses (AIVs) in the live poultry markets (LPMs) in Nanchang City, Jiangxi Province, before and after the outbreak of the COVID-19. From 2019 to 2020, we monitored the LPM and collected specimens, using real-time reverse transcription polymerase chain reaction technology to detect the nucleic acid of type A AIV in the samples. The H5, H7, and H9 subtypes of influenza viruses were further classified for positive results. We analyzed 1,959 samples before and after the outbreak and found that the positive rates of avian influenza A virus (39.69%) and H9 subtype (30.66%) after the outbreak were significantly higher than before the outbreak (26.84% and 20.90%, respectively; P < 0.001). In various LPMs, the positive rate of H9 subtypes has increased significantly (P ≤ 0.001). Positive rates of the H9 subtype in duck, fecal, daub, and sewage samples, but not chicken samples, have increased to varying degrees. This study shows that additional measures are needed to strengthen the control of AIVs now that LPMs have reopened after the relaxing of COVID-19–related restrictions.


2021 ◽  
Vol 17 (8) ◽  
pp. e1009879
Author(s):  
Jeremy W. Ellis ◽  
J. Jeffrey Root ◽  
Loredana M. McCurdy ◽  
Kevin T. Bentler ◽  
Nicole L. Barrett ◽  
...  

Avian influenza A viruses (IAVs) pose risks to public, agricultural, and wildlife health. Bridge hosts are spillover hosts that share habitat with both maintenance hosts (e.g., mallards) and target hosts (e.g., poultry). We conducted a comprehensive assessment of European starlings (Sturnus vulgaris), a common visitor to both urban and agricultural environments, to assess whether this species might act as a potential maintenance or bridge host for IAVs. First, we experimentally inoculated starlings with a wild bird IAV to investigate susceptibility and replication kinetics. Next, we evaluated whether IAV might spill over to starlings from sharing resources with a widespread IAV reservoir host. We accomplished this using a specially designed transmission cage to simulate natural environmental transmission by exposing starlings to water shared with IAV-infected mallards (Anas platyrhynchos). We then conducted a contact study to assess intraspecies transmission between starlings. In the initial experimental infection study, all inoculated starlings shed viral RNA and seroconverted. All starlings in the transmission study became infected and shed RNA at similar levels. All but one of these birds seroconverted, but detectable antibodies were relatively transient, falling to negative levels in a majority of birds by 59 days post contact. None of the contact starlings in the intraspecies transmission experiment became infected. In summary, we demonstrated that starlings may have the potential to act as IAV bridge hosts if they share water with IAV-infected waterfowl. However, starlings are unlikely to act as maintenance hosts due to limited, if any, intraspecies transmission. In addition, starlings have a relatively brief antibody response which should be considered when interpreting serology from field samples. Further study is needed to evaluate the potential for transmission from starlings to poultry, a possibility enhanced by starling’s behavioral trait of forming very large flocks which can descend on poultry facilities when natural resources are scarce.


2021 ◽  
pp. 105071
Author(s):  
Mohamed J. Saadh ◽  
Mostafa M. Aggag ◽  
Amany Alboghdadly ◽  
Abeer Mohammad Kharshid ◽  
Saed M. Aldalaen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document