scholarly journals Influence of Plasmodium falciparum Calcium-Dependent Protein Kinase 5 (PfCDPK5) on the Late Schizont Stage Phosphoproteome

mSphere ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Karin Blomqvist ◽  
Michaela Helmel ◽  
Chengqi Wang ◽  
Sabrina Absalon ◽  
Tetanya Labunska ◽  
...  

ABSTRACT Protein kinases are important mediators of signal transduction in cellular pathways, and calcium-dependent protein kinases (CDPKs) compose a unique class of calcium-dependent kinases present in plants and apicomplexans, including Plasmodium parasites, the causative agents of malaria. During the asexual stage of infection, the human malaria parasite Plasmodium falciparum grows inside red blood cells, and P. falciparum calcium-dependent protein kinase 5 (PfCDPK5) is required for egress from the host cell. In this paper, we characterize the late-schizont-stage P. falciparum phosphoproteome by performing large-scale phosphoproteomic profiling on tightly synchronized parasites just prior to egress, identifying 2,704 phosphorylation sites on 919 proteins. Using a conditional knockdown of PfCDPK5, we identify 58 phosphorylation sites on 50 proteins with significant reduction in levels of PfCDPK5-deficient parasites. Furthermore, gene ontology analysis of the identified proteins reveals enrichment in transmembrane- and membrane-associated proteins and in proteins associated with transport activity. Among the identified proteins is PfNPT1, a member of the apicomplexan-specific novel putative transporter (NPT) family of proteins. We show that PfNPT1 is a potential substrate of PfCDPK5 and that PfNPT1 localizes to the parasite plasma membrane. Importantly, P. falciparum egress relies on many proteins unique to Apicomplexa that are therefore attractive targets for antimalarial therapeutics. IMPORTANCE The malaria parasite Plasmodium falciparum is a major cause of morbidity and mortality globally. The P. falciparum parasite proliferates inside red blood cells during the blood stage of infection, and egress from the red blood cell is critical for parasite survival. P. falciparum calcium-dependent protein kinase 5 (PfCDPK5) is essential for egress; parasites deficient in PfCDPK5 remain trapped inside their host cells. We have used a label-free quantitative mass spectrometry approach to identify the phosphoproteome of schizont-stage parasites just prior to egress and identify 50 proteins that display a significant reduction in phosphorylation in PfCDPK5-deficient parasites. We show that a member of the Apicomplexan-specific transport protein family, PfNPT1 is a potential substrate of PfCDPK5 and is localized to the parasite plasma membrane. P. falciparum egress requires several proteins not present in human cells, thus making this pathway an ideal target for new therapeutics.

2014 ◽  
Vol 58 (10) ◽  
pp. 6032-6043 ◽  
Author(s):  
Keith H. Ansell ◽  
Hayley M. Jones ◽  
David Whalley ◽  
Alisdair Hearn ◽  
Debra L. Taylor ◽  
...  

ABSTRACTPfCDPK1 is aPlasmodium falciparumcalcium-dependent protein kinase, which has been identified as a potential target for novel antimalarial chemotherapeutics. In order to further investigate the role of PfCDPK1, we established a high-throughputin vitrobiochemical assay and used it to screen a library of over 35,000 small molecules. Five chemical series of inhibitors were initially identified from the screen, from which series 1 and 2 were selected for chemical optimization. Indicative of their mechanism of action, enzyme inhibition by these compounds was found to be sensitive to both the ATP concentration and substitution of the amino acid residue present at the “gatekeeper” position at the ATP-binding site of the enzyme. Medicinal chemistry efforts led to a series of PfCDPK1 inhibitors with 50% inhibitory concentrations (IC50s) below 10 nM against PfCDPK1 in a biochemical assay and 50% effective concentrations (EC50s) less than 100 nM for inhibition of parasite growthin vitro. Potent inhibition was combined with acceptable absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties and equipotent inhibition ofPlasmodium vivaxCDPK1. However, we were unable to correlate biochemical inhibition with parasite growth inhibition for this series overall. Inhibition ofPlasmodium bergheiCDPK1 correlated well with PfCDPK1 inhibition, enabling progression of a set of compounds toin vivoevaluation in theP. bergheirodent model for malaria. These chemical series have potential for further development as inhibitors of CDPK1.


2015 ◽  
Vol 60 (1) ◽  
pp. 570-579 ◽  
Author(s):  
Theresa B. Kuhlenschmidt ◽  
Florentine U. Rutaganira ◽  
Shaojun Long ◽  
Keliang Tang ◽  
Kevan M. Shokat ◽  
...  

ABSTRACTCryptosporidiosis is a serious diarrheal disease in immunocompromised patients and malnourished children, and treatment is complicated by a lack of adequate drugs. Recent studies suggest that the natural occurrence of a small gatekeeper residue in serine threonine calcium-dependent protein kinase 1 (CDPK1) ofCryptosporidium parvummight be exploited to target this enzyme and block parasite growth. Here were explored the potency with which a series of pyrazolopyrimidine analogs, which are selective for small gatekeeper kinases, inhibitC. parvumCDPK1 and blockC. parvumgrowth in tissue culturein vitro. Although these compounds potently inhibited kinase activityin vitro, most had no effect on parasite growth. Moreover, among those that were active against parasite growth, there was a very poor correlation with their 50% inhibitory concentrations against the enzyme. Active compounds also had no effect on cell invasion, unlike the situation inToxoplasma gondii, where these compounds block CDPK1, prevent microneme secretion, and disrupt cell invasion. These findings suggest that CPDK1 is not essential forC. parvumhost cell invasion or growth and therefore that it is not the optimal target for therapeutic intervention. Nonetheless, several inhibitors with low micromolar 50% effective concentrations were identified, and these may affect other essential targets inC. parvumthat are worthy of further exploration.


mBio ◽  
2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Sabrina Absalon ◽  
Karin Blomqvist ◽  
Rachel M. Rudlaff ◽  
Travis J. DeLano ◽  
Michael P. Pollastri ◽  
...  

ABSTRACT The human malaria parasite Plasmodium falciparum requires efficient egress out of an infected red blood cell for pathogenesis. This egress event is highly coordinated and is mediated by several signaling proteins, including the plant-like P. falciparum calcium-dependent protein kinase 5 (PfCDPK5). Knockdown of PfCDPK5 results in an egress block where parasites are trapped inside their host cells. The mechanism of this PfCDPK5-dependent block, however, remains unknown. Here, we show that PfCDPK5 colocalizes with a specialized set of parasite organelles known as micronemes and is required for their discharge, implicating failure of this step as the cause of the egress defect in PfCDPK5-deficient parasites. Furthermore, we show that PfCDPK5 cooperates with the P. falciparum cGMP-dependent kinase (PfPKG) to fully activate the protease cascade critical for parasite egress. The PfCDPK5-dependent arrest can be overcome by hyperactivation of PfPKG or by physical disruption of the arrested parasite, and we show that both treatments facilitate the release of the micronemes required for egress. Our results define the molecular mechanism of PfCDPK5 function and elucidate the complex signaling pathway of parasite egress. IMPORTANCE The signs and symptoms of clinical malaria result from the replication of parasites in human blood. Efficient egress of the malaria parasite Plasmodium falciparum out of an infected red blood cell is critical for pathogenesis. The P. falciparum calcium-dependent protein kinase 5 (PfCDPK5) is essential for parasite egress. Following PfCDPK5 knockdown, parasites remain trapped inside their host cell and do not egress, but the mechanism for this block remains unknown. We show that PfCDPK5 colocalizes with parasite organelles known as micronemes. We demonstrate that PfCDPK5 is critical for the discharge of these micronemes and that failure of this step is the molecular mechanism of the parasite egress arrest. We also show that hyperactivation of the cGMP-dependent kinase PKG can overcome this arrest. Our data suggest that small molecules that inhibit the egress signaling pathway could be effective antimalarial therapeutics.


2019 ◽  
Vol 5 (4) ◽  
pp. 506-514 ◽  
Author(s):  
Briana R. Flaherty ◽  
Tienhuei G. Ho ◽  
Sven H. Schmidt ◽  
Friedrich W. Herberg ◽  
David S. Peterson ◽  
...  

2014 ◽  
Vol 57 (8) ◽  
pp. 3570-3587 ◽  
Author(s):  
Timothy M. Chapman ◽  
Simon A. Osborne ◽  
Claire Wallace ◽  
Kristian Birchall ◽  
Nathalie Bouloc ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document