raf kinase inhibitor protein
Recently Published Documents


TOTAL DOCUMENTS

130
(FIVE YEARS 12)

H-INDEX

29
(FIVE YEARS 2)

2022 ◽  
Vol 23 (2) ◽  
pp. 706
Author(s):  
Constanze Schanbacher ◽  
Michael Bieber ◽  
Yvonne Reinders ◽  
Deya Cherpokova ◽  
Christina Teichert ◽  
...  

Ischemic disorders are the leading cause of death worldwide. The extracellular signal-regulated kinases 1 and 2 (ERK1/2) are thought to affect the outcome of ischemic stroke. However, it is under debate whether activation or inhibition of ERK1/2 is beneficial. In this study, we report that the ubiquitous overexpression of wild-type ERK2 in mice (ERK2wt) is detrimental after transient occlusion of the middle cerebral artery (tMCAO), as it led to a massive increase in infarct volume and neurological deficits by increasing blood–brain barrier (BBB) leakiness, inflammation, and the number of apoptotic neurons. To compare ERK1/2 activation and inhibition side-by-side, we also used mice with ubiquitous overexpression of the Raf-kinase inhibitor protein (RKIPwt) and its phosphorylation-deficient mutant RKIPS153A, known inhibitors of the ERK1/2 signaling cascade. RKIPwt and RKIPS153A attenuated ischemia-induced damages, in particular via anti-inflammatory signaling. Taken together, our data suggest that stimulation of the Raf/MEK/ERK1/2-cascade is severely detrimental and its inhibition is rather protective. Thus, a tight control of the ERK1/2 signaling is essential for the outcome in response to ischemic stroke.


2021 ◽  
Vol 19 (12) ◽  
pp. 2583-2590
Author(s):  
Mengxin Lin ◽  
Xiaoyan Lin ◽  
Xiaobing Huang ◽  
Qing Liu ◽  
Riping Wu ◽  
...  

Purpose: To determine the association between phosphatidylethanolamine binding protein 1, which is an Raf kinase inhibitor protein (RKIP), and 5-fluorouracil (5-FU) via analysis of the association between RKIP and clinical responses in individuals treated using fluorouracil-based chemotherapy.Methods: Human gastric cancer cell lines MGC-803 and SGC-7901 were used in this study. Cell viability was measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Apoptosis and migration were determined with flow cytometry and Transwell chamber assays, respectively. The mRNA and protein expressions of apoptosis-related factors were assayed using realtime polymerase chain reaction (RT-PCR) and Western blotting, respectively, while the expression of RKIP was determined by immunohistochemical staining.Results: Chemotherapeutic drug (5-FU) treatment induced low RKIP expression levels in tumorigenic GC cells, thereby sensitizing the cells to apoptosis (8.57 vs 1.25 %, p < 0.01). The highest RKIP level correlated well with initiation of apoptosis (4.20 vs 1.25 %, p < 0.01). Following in vitro downregulation of RKIP, there was increase in the viability and proliferation of RKIP-inhibited cells over time, and these changes were linked to alterations in cell cycle phases and increased optical density in MTT proliferation assay (1.55 vs 1.18, p < 0.01). In vitro Transwell assay measurement revealed an association between RKIP downregulation and enhancement of cell migration potential (652 vs 436, p < 0.01). Ectopic RKIP expression restored the apoptotic sensitivity of resistant cells (14.30 vs 1.36 %, p <0.01). This sensitization was annulled by upregulation of survival routes. Reduction of RKIP by expression of antisense and siRNA conferred resistance on cancer cells sensitive to 5-FU-mediated apoptosis (6.88 vs 2.13 %, p < 0.01).Conclusion: Thus, RKIP is a promising therapeutic strategy for improving the efficacy of clinically relevant chemotherapeutic drugs for GC. Keywords: Gastric cancer, Raf kinase inhibitor protein, Cell proliferation, Invasion, Apoptosis, Chemotherapy,  Phosphatidylethanolamine binding protein 1


2021 ◽  
Vol 242 ◽  
pp. 126615
Author(s):  
M.A. Abo-Kadoum ◽  
Mohammed Assad ◽  
Yongdong Dai ◽  
Nzungize Lambert ◽  
Ulrich Aymard Ekomi Moure ◽  
...  

Cancers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1451 ◽  
Author(s):  
Cristina Penas ◽  
Aintzane Apraiz ◽  
Iraia Muñoa ◽  
Yoana Arroyo-Berdugo ◽  
Javier Rasero ◽  
...  

Raf Kinase Inhibitor Protein (RKIP) has been extensively reported as an inhibitor of key signaling pathways involved in the aggressive tumor phenotype and shows decreased expression in several types of cancers. However, little is known about RKIP in melanoma or regarding its function in normal cells. We examined the role of RKIP in both primary melanocytes and malignant melanoma cells and evaluated its diagnostic and prognostic value. IHC analysis revealed a significantly higher expression of RKIP in nevi compared with early-stage (stage I–II, AJCC 8th) melanoma biopsies. Proliferation, wound healing, and collagen-coated transwell assays uncovered the implication of RKIP on the motility but not on the proliferative capacity of melanoma cells as RKIP protein levels were inversely correlated with the migration capacity of both primary and metastatic melanoma cells but did not alter other parameters. As shown by RNA sequencing, endogenous RKIP knockdown in primary melanocytes triggered the deregulation of cellular differentiation-related processes, including genes (i.e., ZEB1, THY-1) closely related to the EMT. Interestingly, NANOG was identified as a putative transcriptional regulator of many of the deregulated genes, and RKIP was able to decrease the activation of the NANOG promoter. As a whole, our data support the utility of RKIP as a diagnostic marker for early-stage melanomas. In addition, these findings indicate its participation in the maintenance of a differentiated state of melanocytic cells by modulating genes intimately linked to the cellular motility and explain the progressive decrease of RKIP often described in tumors.


Biomolecules ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 769 ◽  
Author(s):  
Gabriela-Freitas ◽  
Pinheiro ◽  
Raquel-Cunha ◽  
Cardoso-Carneiro ◽  
Martinho

Raf kinase inhibitor protein (RKIP), an important modulator of intracellular signalling pathways, is commonly downregulated in multiple cancers. This reduction, or loss of expression, is correlated not only with the presence of metastasis, contributing to RKIP’s classification as a metastasis suppressor, but also with tumour aggressiveness and poor prognosis. Recent findings suggest a strong involvement of RKIP in the modulation of tumour microenvironment components, particularly by controlling the infiltration of specific immune cells and secretion of pro-metastatic factors. Additionally, RKIP interaction with multiple signalling molecules seems to potentiate its function as a regulator of inflammatory processes, mainly through stimulation of anti- or pro-inflammatory cytokines. Furthermore, RKIP is involved in the modulation of immunotherapeutic drugs response, through diverse mechanisms that sensitize cells to apoptosis. In the present review, we will provide updated information about the role of RKIP as an inflammatory and immune modulator and its potential implications in cancer will be addressed.


2019 ◽  
Vol 20 (22) ◽  
pp. 5756 ◽  
Author(s):  
Armin Zebisch ◽  
Veronica Caraffini ◽  
Heinz Sill

RAF kinase inhibitor protein (RKIP) is an essential regulator of intracellular signaling. A somatic loss of RKIP expression is a frequent event in solid human cancers, and a role of RKIP as metastasis-suppressor is widely accepted nowadays. Recently, RKIP loss has been described in acute myeloid leukemia (AML) and a series of other myeloid neoplasias (MNs). Functional in vitro and in vivo experiments revealed that RKIP is an essential player within the development of these liquid tumors; however, the respective role of RKIP seems to be complex and multi-faceted. In this review, we will summarize the current knowledge about RKIP in myeloid leukemogenesis. We will initially describe its involvement in physiologic hematopoiesis, and will then proceed to discuss its role in the development of AML and other MNs. Finally, we will discuss potential therapeutic implications arising thereof.


Sign in / Sign up

Export Citation Format

Share Document