calmodulin antagonist
Recently Published Documents


TOTAL DOCUMENTS

337
(FIVE YEARS 4)

H-INDEX

35
(FIVE YEARS 0)

Author(s):  
Kate A. Bowley ◽  
Geoffrey I. Sandle

AbstractIntermediate conductance potassium (IKCa) channels are exquisitively Ca2+ sensitive, intracellular Ca2+ regulating channel activity by complexing with calmodulin (CaM), which is bound to the cytosolic carboxyl tail. Although CaM antagonists might be expected to decrease IKCa channel activity, the effect of W-7 in human T lymphocytes are conflicting. We therefore evaluated the effect of W-7 on basolateral IKCa channels in human colonic crypt cells. Intact crypts obtained from normal human colonic biopsies by Ca2+ chelation were used for patch clamp studies of basolateral IKCa channels in the cell-attached configuration. IKCa channel activity was studied when the bath Ca2+ concentration was changed from 1.2 mmol/L to 100 μmol/L and back to 1.2 mmol/L, as well as from 100 μmol/L to 1.2 mmol/L and back to 100 μmol/L, both in the absence and presence of 25 μmol/L W-7. Decreasing bath Ca2+ from 1.2 mmol/L to 100 μmol/L decreased IKCa channel activity reversibly in the absence of W-7, whereas there was a uniformly high level of channel activity at both bath Ca2+ concentrations in the presence of W-7. In separate experiments, increasing bath Ca2+ from 100 μmol/L to 1.2 mmol/L increased IKCa channel activity reversibly in the absence of W-7, whereas there was again a uniformly high level of channel activity at both bath Ca2+ concentrations in the presence of W-7. We, therefore, propose that W-7 has a specific stimulatory effect on basolateral IKCa channel activity, despite its ability to inhibit Ca2+/CaM-mediated, IKCa channel-dependent Cl− secretion in human colonic epithelial cells. Graphic Abstract


Author(s):  
Thi Nga Nguyen ◽  
Hideaki Suzuki ◽  
Jun-ichi Ohkubo ◽  
Tetsuro Wakasugi ◽  
Takuro Kitamura

<b><i>Background:</i></b> The ciliary beat of the airway epithelium, including the sinonasal epithelium, has a significant role in frontline defense and is thought to be controlled by the level of intracellular Ca<sup>2+</sup>. Involvement of calmodulin and adenylate/guanylate cyclases in the regulation of ciliary beats has been reported, and here we investigated the interrelation between these components of the ciliary beat regulatory pathway. <b><i>Methods:</i></b> The inferior turbinates were collected from 29 patients with chronic hypertrophic rhinitis/rhinosinusitis during endoscopic sinonasal surgery. The turbinate mucosa was cut into thin strips, and mucociliary movement was observed under a phase-contrast light microscope equipped with a high-speed digital video camera. <b><i>Results:</i></b> The ciliary beat frequency (CBF) was significantly increased by stimulation with 100 μM CALP3 (calmodulin agonist), which was completely suppressed by adding 100 µM SQ22536 (adenylate cyclase inhibitor) and 10 µM ODQ (guanylate cyclase inhibitor) together and by adding 1 µM KT5720 (protein kinase A inhibitor) and 1 µM KT5823 (protein kinase G inhibitor) together. The CBF was significantly increased by stimulation with 10 µM forskolin (adenylate cyclase activator) and 10 µM BAY41-2272 (guanylate cyclase activator) and by stimulation with 100 µM 8-bromo-cAMP (cAMP analog) and 100 µM 8-bromo-cGMP (cGMP analog), which was not changed by adding 1 µM calmidazolium (calmodulin antagonist). <b><i>Conclusions:</i></b> These results confirmed that the regulatory pathway of ciliary beats in the human nasal mucosa involves calmodulin, adenylate/guanylate cyclases, and protein kinases A/G and indicate that adenylate/guanylate cyclases and protein kinases A/G act downstream of calmodulin, but not vice versa, and that these cyclases relay calmodulin signaling.


2018 ◽  
Vol 19 (11) ◽  
pp. 3499 ◽  
Author(s):  
Yulia Baburina ◽  
Irina Odinokova ◽  
Tamara Azarashvili ◽  
Vladimir Akatov ◽  
Linda Sotnikova ◽  
...  

Calcium as a secondary messenger regulates the phosphorylation of several membrane-bound proteins in brain and liver mitochondria. Regulation of the activity of different protein kinases and phosphatases by Ca2+ occurs through its binding with calmodulin. The protein phosphorylation is strongly dependent on the Ca2+-induced mitochondrial permeability transition pore (mPTP) opening. 2′,3′-Cyclic nucleotide-3′-phosphodiesterase (CNPase) was phosphorylated by protein kinases A and C. CNPase and melatonin (MEL) might interact with calmodulin. The effects of the calmodulin antagonist calmidazolium and the inhibitor of protein kinase A H89 on mPTP opening in rat brain mitochondria of male Wistar rats were investigated. In addition, the role of CNPase, serine/threonine kinases, and MEL in the mPTP opening was examined. The anti-CNPase antibody added to rat brain mitochondria (RBM) reduced the content of CNPase in mitochondria. The threshold [Ca2+] decreased, and mitochondrial swelling was accelerated in the presence of the anti-CNPase antibody. H89 enhanced the effect of anti-CNPase antibody and accelerated the swelling of mitochondria, while CmZ abolished the effect of anti-CNPase antibody under mPTP opening. The levels of phospho-Akt and phospho-GSK3β increased, while the MEL content did not change. It can be assumed that CNPase may be involved in the regulation of these kinases, which in turn plays an important role in mPTP functioning.


2018 ◽  
Vol 9 (1) ◽  
pp. 53-63 ◽  
Author(s):  
Christina Körbel ◽  
Maximilian Linxweiler ◽  
Florian Bochen ◽  
Silke Wemmert ◽  
Bernhard Schick ◽  
...  

AbstractTreatment with analogues of the SERCA-inhibitor Thapsigargin is a promising new approach for a wide variety of cancer entities. However, our previous studies on various tumor cells suggested resistance of SEC62 over-expressing tumors to this treatment. Therefore, we proposed the novel concept that e.g. lung-, prostate-, and thyroid-cancer patients should be tested for SEC62 over-expression, and developed a novel therapeutic strategy for a combinatorial treatment of SEC62 over-expressing tumors. The latter was based on the observations that treatment of SEC62 over-expressing tumor cells with SEC62-targeting siRNAs showed less resistance to Thapsigargin as well as a reduction in migratory potential and that the siRNA effects can be mimicked by the Calmodulin antagonist Trifluoperazine. Therefore, the combinatorial treatment of SEC62 over-expressing tumors was proposed to involve Thapsigargin and Trifluoperazine. Here, we addressed the impact of Thapsigargin and Trifluoperazine in separate and combined treatments of heterotopic tumors, induced by inoculation of human hypopharyngeal squamous cell carcinoma (FaDu)-cells into the mouse flank. Seeding of the tumor cells and/or their growth rate were significantly reduced by all three treatments, suggesting Trifluoperazine is a small molecule to be considered for future therapeutic strategies for patients, suffering from Sec62-overproducing tumors.


2018 ◽  
Vol 119 (7) ◽  
pp. 6216-6230 ◽  
Author(s):  
Romone M. Fancy ◽  
Harrison Kim ◽  
Tiara Napier ◽  
Donald J. Buchsbaum ◽  
Kurt R. Zinn ◽  
...  

Tetrahedron ◽  
2018 ◽  
Vol 74 (1) ◽  
pp. 96-103 ◽  
Author(s):  
Shyam Basak ◽  
Smita Mandal ◽  
Dipakranjan Mal

Virology ◽  
2017 ◽  
Vol 501 ◽  
pp. 188-198 ◽  
Author(s):  
Patricia Bautista-Carbajal ◽  
Ruben Soto-Acosta ◽  
Antonio H. Angel-Ambrocio ◽  
Margot Cervantes-Salazar ◽  
Circe I. Loranca-Vega ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document