scholarly journals Directional Gaussian Mixture Models of the Gut Microbiome Elucidate Microbial Spatial Structure

mSystems ◽  
2021 ◽  
Author(s):  
Amey P. Pasarkar ◽  
Tyler A. Joseph ◽  
Itsik Pe’er

The spatial arrangement of the microbes in the gut microbiome is a defining characteristic of its behavior. Various experimental studies have attempted to provide glimpses into the mechanisms that contribute to microbial arrangements.

2021 ◽  
Author(s):  
Amey Praveen Pasarkar ◽  
Tyler A Joseph ◽  
Itsik Pe'er

The gut microbiome is spatially heterogeneous, with environmental niches contributing to the distribution and composition of microbial populations. A recently developed mapping technology, MaPS-seq, aims to characterize the spatial organization of the gut microbiome by providing data about local microbial populations. However, information about the global arrangement of these populations is lost by MaPS-seq. To address this, we propose a class of Gaussian Mixture Models (GMM) with spatial dependencies between mixture components in order to computationally recover the relative spatial arrangement of microbial communities. We demonstrate on synthetic data that our spatial models can identify global spatial dynamics, accurately cluster data, and improve parameter inference over a naive GMM. We applied our model to three MaPS-Seq datasets taken from varying regions of the mouse intestine. On cecal and distal colon datasets, we find our model accurately recapitulates known spatial behaviors of the gut microbiome, including compositional differences between mucus and lumen-associated populations. Our model also seem to capture the role of a pH gradient on microbial populations in the mouse ileum and proposes new behaviors as well.


2017 ◽  
Vol 34 (10) ◽  
pp. 1399-1414 ◽  
Author(s):  
Wanxia Deng ◽  
Huanxin Zou ◽  
Fang Guo ◽  
Lin Lei ◽  
Shilin Zhou ◽  
...  

2013 ◽  
Vol 141 (6) ◽  
pp. 1737-1760 ◽  
Author(s):  
Thomas Sondergaard ◽  
Pierre F. J. Lermusiaux

Abstract This work introduces and derives an efficient, data-driven assimilation scheme, focused on a time-dependent stochastic subspace that respects nonlinear dynamics and captures non-Gaussian statistics as it occurs. The motivation is to obtain a filter that is applicable to realistic geophysical applications, but that also rigorously utilizes the governing dynamical equations with information theory and learning theory for efficient Bayesian data assimilation. Building on the foundations of classical filters, the underlying theory and algorithmic implementation of the new filter are developed and derived. The stochastic Dynamically Orthogonal (DO) field equations and their adaptive stochastic subspace are employed to predict prior probabilities for the full dynamical state, effectively approximating the Fokker–Planck equation. At assimilation times, the DO realizations are fit to semiparametric Gaussian Mixture Models (GMMs) using the Expectation-Maximization algorithm and the Bayesian Information Criterion. Bayes’s law is then efficiently carried out analytically within the evolving stochastic subspace. The resulting GMM-DO filter is illustrated in a very simple example. Variations of the GMM-DO filter are also provided along with comparisons with related schemes.


2013 ◽  
Vol 61 (12) ◽  
pp. 1696-1709 ◽  
Author(s):  
Paulo Drews ◽  
Pedro Núñez ◽  
Rui P. Rocha ◽  
Mario Campos ◽  
Jorge Dias

Sign in / Sign up

Export Citation Format

Share Document