scholarly journals Thermal evolution of the eastern Serranía del Interior foreland fold and thrust belt, northeastern Venezuela, based on apatite fission-track analyses

Author(s):  
Brian D. Locke ◽  
John I. Garver
Geosciences ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 10
Author(s):  
Diego Villagómez Díaz ◽  
Silvia Omodeo-Salé ◽  
Alexey Ulyanov ◽  
Andrea Moscariello

This work presents new apatite fission track LA–ICP–MS (Laser Ablation Inductively Coupled Plasma Mass Spectrometry) data from Mid–Late Paleozoic rocks, which form the substratum of the Swiss Jura mountains (the Tabular Jura and the Jura fold-and-thrust belt) and the northern margin of the Swiss Molasse Basin. Samples were collected from cores of deep boreholes drilled in North Switzerland in the 1980s, which reached the crystalline basement. Our thermochronological data show that the region experienced a multi-cycle history of heating and cooling that we ascribe to burial and exhumation, respectively. Sedimentation in the Swiss Jura Mountains occurred continuously from Early Triassic to Early Cretaceous, leading to the deposition of maximum 2 km of sediments. Subsequently, less than 1 km of Lower Cretaceous and Upper Jurassic sediments were slowly eroded during the Late Cretaceous, plausibly as a consequence of the northward migration of the forebulge of the neo-forming North Alpine Foreland Basin. Following this event, the whole region remained relatively stable throughout the Paleogene. Our data show that the Tabular Jura region resumed exhumation at low rates in early–middle Miocene times (≈20–15 Ma), whereas exhumation in the Jura fold-and-thrust belt probably re-started later, in the late Miocene (≈10–5 Ma). Erosional exhumation likely continues to the present day. Despite sampling limitations, our thermochronological data record discrete periods of slow cooling (rates of about 1°C/My), which might preclude models of elevated cooling (due to intense erosion) in the Jura Mountains during the Miocene. The denudation (≈1 km) of the Tabular Jura region and the Jura fold-and-thrust belt (≈500 m) has provided sediments to the Swiss Molasse Basin since at least 20 Ma. The southward migration of deformation in the Jura mountains suggests that the molasse basin started to uplift and exhume only after 5 Ma, as suggested also by previous authors. The data presented here show that the deformation of the whole region is occurring in an out-of-sequence trend, which is more likely associated with the reactivation of thrust faults beneath the foreland basin. This deformation trend suggests that tectonics is the most determinant factor controlling denudation and exhumation of the region, whereas the recently proposed “climate-induced exhumation” mechanism might play a secondary role.


2017 ◽  
Vol 130 (5-6) ◽  
pp. 975-998 ◽  
Author(s):  
Annette Süssenberger ◽  
Susanne T. Schmidt ◽  
Klaus Wemmer ◽  
Lukas P. Baumgartner ◽  
Bernard Grobéty

2020 ◽  
Author(s):  
Romain Beucher ◽  
Louis Moresi ◽  
Roderick Brown ◽  
Claire Mallard

<p>State of the art thermo-mechanical models have become very efficient at testing scenarios of tectonic evolution but uncertainties on the rheologies and the complexity of the have so far limited the potential to quantitatively predict uplift and subsidence. Coupling thermo-mechanical models to landscape evolution models remains challenging and require careful validation and better integration of field data to prevent error in interpretation.</p><p> </p><p>Low temperature thermochronology has been extensively used to quantitatively constrain the thermal histories of rocks. It can provide important information on tectonic uplift (or subsidence) by measuring the erosional (or burial) response and can also map the spatial and temporal pattern of geomorphic response of a landscape.</p><p> </p><p>We use the temperature evolution of our coupled thermo-mechanical models with surface processes to predict Apatite fission track data (Ages and Track lengths distributions). The aim is to provide a direct means of comparison with actual empirical thermochronometric data which will allow different model scenarios and/or model parameter choices to be robustly tested.</p><p>We present a series of 3D coupled models (Underworld / Badlands) of Rifts and the associated Apatite Fission Track predicted by the thermal evolution of the rocks exhumed to the surface. We compare models predictions to existing thermochronological transects across passive margins.</p><p> </p><p>We discuss the technical challenges in obtaining sufficiently high resolution temperature field and other associated challenges that need to be addressed to satisfactory apply our model to natural examples.</p>


1999 ◽  
Vol 11 (4) ◽  
pp. 451-460 ◽  
Author(s):  
Joachim Jacobs ◽  
Frank Lisker

New apatite fission-track (AFT) ages from Heimefrontfjella and Mannefallknausane indicate that the Mesoproterozoic basement and Permian sedimentary cover rocks were heated to c. 100°C during the Mesozoic. Heating was due to the burial by up to 2000 m of Jurassic lavas at c. 180 Ma, when the area was affected by the Bouvet/Karoo hot spot. Near the developing coastline, the lava pile was quickly eroded and in part deposited on the continental shelf as pebbly and coarse-grained volcaniclastic sandstones. The AFT data indicate that farther inland the lava pile was not eroded until c. 100 Ma, and the Palaeozoic unconformity between the Mesoproterozoic basement and Permo–Carboniferous sedimentary rocks as a reference plane remained at temperatures of c. 80°C. Formation of an up to 800 m b.s.l. deep graben in from Heimefrontfjella as well as flexural uplift and rapid denudational cooling of the not extended crust from Heimefrontfjella southwards occurred at c. 100 Ma. It is speculated that a period of major plate reorganisation and new rifting at c. 100 Ma is responsible for affecting a much wider continental margin as far inland as Heimefrontfjella and producing a total relief in excess of 3500 m.


Sign in / Sign up

Export Citation Format

Share Document