swiss jura
Recently Published Documents


TOTAL DOCUMENTS

169
(FIVE YEARS 15)

H-INDEX

30
(FIVE YEARS 1)

PalZ ◽  
2021 ◽  
Author(s):  
Christian A. Meyer ◽  
Matteo Belvedere ◽  
Benjamin Englich ◽  
Martin G. Lockley

AbstractA restudy of the Barkhausen dinosaur tracksite shows that the track-bearing surface reveals considerably more detail than previously indicated, and a new map is presented, showing the trackways of nine sauropods, traveling north, possibly as a group. These are among the smallest sauropod tracks recorded in Europe. There is also evidence of two large theropods crossing the area, one moving to the south and the other to the west. Evidence of at least three other sauropods is registered in the form of isolated manus traces that represent larger individuals. Previous interpretations inferred that sauropod trackways trended south, and therefore suggested a predator chasing its prey as in the purported but controversial attack scenario claimed for the famous Paluxy River site in Texas. Based on the present study, this scenario is no longer tenable for the Barkhausen tracksite. The description of Elephantopoides barkhausensis (Kaever and Lapparent, 1974) shows that it represents a moderately wide gauge, but small manus sauropod and can be assigned under the ichnofamily label Parabrontopodidae. E. barkhausensis as originally defined was a nomen dubium, but it has since been re-described semi-formally, without renaming, we emend the description and assigned them to the ichnotaxon Parabrontopodus barkhausensis comb. nov. These tracks could have been produced by the small sauropod dinosaur taxon Europasaurus. The problematic ichnotaxon Megalosauropus teutonicus (Kaever and Lapparent, 1974), which represents a large three-toed theropod, is assigned to the recently described ichnogenus Jurabrontes from the Late Kimmeridgian of the Swiss Jura mountains as Jurabrontes teutonicus comb. nov. Furthermore, we attribute the theropod tracks from the time equivalent Langenberg quarry to the same ichnotaxon.


2021 ◽  
Vol 76 (2) ◽  
pp. 147-158
Author(s):  
Rémi Willemin ◽  
Norman Backhaus

Abstract. In response to global change and biodiversity loss caused, inter alia, by agricultural practices, our speculative photo-response fabulation project with farmers and beekeepers in the Jura region co-develops perceptions of the future of Switzerland's waterscapes. Research participants imagine and narrate the most probable and most desired futures of waterscapes in 2222. The technique of speculative photo-response fabulation uses photographs to elicit participants' concerns over probable ecosystem degradation and drought in the Jura contrasted with their desired futures of sustainability. In their responses, participants envision actions that support systemic changes in opposition to a frontier spirit of economic profit that causes biodiversity loss.


2021 ◽  
Vol 114 (1) ◽  
Author(s):  
Markus Egli ◽  
Guido Wiesenberg ◽  
Jens Leifeld ◽  
Holger Gärtner ◽  
Jan Seibert ◽  
...  

AbstractThe rapidly collapsing glacial systems of the Alps produced a large number of melt-water lakes and mires after the Last Glacial Maximum (LGM) in the Late Glacial period. The Rhone-Aare-glacier system gave rise to large moorlands and lakes in the region of the Three Lakes Region of Western Switzerland. When moorlands are formed, they are efficient sinks of atmospheric carbon, but when transformed to agricultural land they are significant C sources. In addition, mires can be used as archives for reconstructing landscape evolution. We explored in more detail the dynamics of the landscape of the Three Lakes Region with a particular focus on the formation and degradation of mires. The Bernese part of the Three Lakes Region developed to become—after the optimisation of the water-levels of the Swiss Jura—the vegetable belt of Switzerland. The situation for agriculture, however, has now become critical due to an overexploitation of the peatland. Until c. 13 ka BP the entire region was hydrologically connected. An additional lake existed at the western end of the plain receiving sediments from the Aare river. Around 13 ka BP, this lake was isolated from the Aare river and completely silted up until c. 10 ka BP when a mire started to form. In the valley floor (‘Grosses Moos’), the meandering Aare and the varying level of the nearby lake of Neuchâtel caused a spatio-temporally patchy formation of mires (start of formation: 10–3 ka BP). Strong morphodynamics having high erosion and sedimentation rates and a high variability of the chemical composition of the deposited material prevailed during the early Holocene until c. 7.5 ka BP. The situation remained relatively quiet between 5 and 2 ka BP. However, during the last 2000 years the hydrodynamic and geomorphic activities have increased again. The optimisation of the Swiss Jura water-levels during the nineteenth and twentieth centuries enabled the transformation of moorland into arable land. As a consequence, the moorland strongly degraded. Mean annual C-losses in agricultural land are c. 4.9 t ha−1 and c. 2.4 t ha−1 in forests. Because forests limit, but not stop, the degradation of mires, agroforestry might be tested and propagated in future as alternative land-use systems for such sensitive areas.


Geosciences ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 10
Author(s):  
Diego Villagómez Díaz ◽  
Silvia Omodeo-Salé ◽  
Alexey Ulyanov ◽  
Andrea Moscariello

This work presents new apatite fission track LA–ICP–MS (Laser Ablation Inductively Coupled Plasma Mass Spectrometry) data from Mid–Late Paleozoic rocks, which form the substratum of the Swiss Jura mountains (the Tabular Jura and the Jura fold-and-thrust belt) and the northern margin of the Swiss Molasse Basin. Samples were collected from cores of deep boreholes drilled in North Switzerland in the 1980s, which reached the crystalline basement. Our thermochronological data show that the region experienced a multi-cycle history of heating and cooling that we ascribe to burial and exhumation, respectively. Sedimentation in the Swiss Jura Mountains occurred continuously from Early Triassic to Early Cretaceous, leading to the deposition of maximum 2 km of sediments. Subsequently, less than 1 km of Lower Cretaceous and Upper Jurassic sediments were slowly eroded during the Late Cretaceous, plausibly as a consequence of the northward migration of the forebulge of the neo-forming North Alpine Foreland Basin. Following this event, the whole region remained relatively stable throughout the Paleogene. Our data show that the Tabular Jura region resumed exhumation at low rates in early–middle Miocene times (≈20–15 Ma), whereas exhumation in the Jura fold-and-thrust belt probably re-started later, in the late Miocene (≈10–5 Ma). Erosional exhumation likely continues to the present day. Despite sampling limitations, our thermochronological data record discrete periods of slow cooling (rates of about 1°C/My), which might preclude models of elevated cooling (due to intense erosion) in the Jura Mountains during the Miocene. The denudation (≈1 km) of the Tabular Jura region and the Jura fold-and-thrust belt (≈500 m) has provided sediments to the Swiss Molasse Basin since at least 20 Ma. The southward migration of deformation in the Jura mountains suggests that the molasse basin started to uplift and exhume only after 5 Ma, as suggested also by previous authors. The data presented here show that the deformation of the whole region is occurring in an out-of-sequence trend, which is more likely associated with the reactivation of thrust faults beneath the foreland basin. This deformation trend suggests that tectonics is the most determinant factor controlling denudation and exhumation of the region, whereas the recently proposed “climate-induced exhumation” mechanism might play a secondary role.


2020 ◽  
Vol 125 (4) ◽  
pp. 321-327
Author(s):  
Hadrien Gens ◽  
Claire Villemant

Vanhornia leileri Hedqvist, 1976 in France (Hymenoptera, Proctotrupoidea, Vanhorniidae). Vanhornia leileri was recently collected in the French part of the Jura massif, in the Lac de Remoray Nature Reserve. This species described from Sweden was then found in the Russian Far East, the Swiss Jura, Germany and very recently the Netherlands. The presence of V. leileri at the northeast of the Jura massif is the second mention of this parasitoid in France after a previous one from Haute-Savoie. The apparent rarity of this parasitoid seems to be linked to that of its saproxylic Eucnemidae beetle hosts. We present here the main knowledge acquired on Vanhorniidae and this species still so little known.


2020 ◽  
Vol 139 (1) ◽  
Author(s):  
Eric De Kaenel ◽  
Pierre-Olivier Mojon ◽  
Antoine Pictet

AbstractIn the central Jura Mountains (Western Switzerland), the Urgonien Jaune (UJ) facies with the Marnes de la Russille beds (MRu) have provided very rich nannofloras associated with very rare Tethyan ammonites. A late Early Barremian nannoflora of the Mid-Barremian Event (MBE, following a regional tectonic event of an earliest Barremian synsedimentary tectonic crisis) was found in MRu of the lower UJ and includes 42 genera with 90 species. Among them, Biscutum jurensis De Kaenel, n. sp., Flabellites eclepensensis De Kaenel, n. sp., Palaeopontosphaera giraudii De Kaenel, n. sp., Rhagodiscus buisensis De Kaenel, n. sp., and Vagalapilla rutledgei De Kaenel, n. sp., are recognized as five new species. This nannoflora is a mixture of Boreal and Tethyan taxa with 20 nannofossil markers (Assipetra terebrodentarius, Broinsonia galloisii, Calcicalathina oblongata, Cyclagelosphaera rotaclypeata, Diloma placinum, Ethmorhabdus hauterivianus, Flabellites eclepensensis, Gorkaea pseudoanthophorus, Nannoconus abundans, Nannoconus pseudoseptentrionalis, Palaeopontosphaera giraudii, Palaeopontosphaera pinnata, Placozygus howei, Placozygus reticulatus, Reinhardtites scutula, Rhagodiscus buisensis, Rhagodiscus eboracensis, Tegulalithus septentrionalis, Tubodiscus jurapelagicus, Zeugrhabdotus moulladei) indicating very precisely the nannofossil Zones LK19 (Boreal)–NC5D (Tethyan) as well as the Elegans (Boreal) and Moutonianum (Tethyan) ammonite Zones of the latest Early Barremian. The ammonites in the basal UJ facies of Early Barremian age are reworked Lyticoceras claveli (Nodosoplicatum Zone, Early Hauterivian) and reworked Cruasiceras cf. cruasense (Sayni Zone, early Late Hauterivian), and Pseudometahoplites sp. juv. (Compressissima to Vandenheckii Zones, Early to Late Barremian transition) from the basal MRu. The new palaeontological and sequential results of this study allow a revision of previous data from Godet et al. (2010) precisely assigning a Barremian age to the MRu of the central Jura Mountains (Tethyan Compressissima to lower Sartousiana and Boreal uppermost Fissicostatum to middle Denckmanii ammonite Zones, Boreal LK20B-LK19-LK18 and Tethyan NC5D nannofossil Zones), within the Early to Late Barremian UJ (Tethyan Hugii to lower Sartousiana and Boreal Rarocinctum to middle Denckmanii ammonite Zones, Boreal LK20C to LK18 and Tethyan NC5C-NC5D nannofossil Zones) and below the Late Barremian Urgonien Blanc facies (Tethyan Sartousiana ammonite Zone).


2020 ◽  
Author(s):  
Gagliardi Fanny ◽  
Maridet Olivier ◽  
Becker Damien

AbstractThe Miocene sands of the Swiss Jura Mountains, long exploited in quarries for the construction industry, have yielded abundant fossil remains of large mammals. Among Deinotheriidae (Proboscidea), two species, Prodeinotherium bavaricum and Deinotherium giganteum, had previously been identified in the Delémont valley, but never described. A third species, Deinotherium levius, from the locality of Charmoille in Ajoie, is reported herein for the first time in Switzerland. These occurrences are dated from the late early to the early late Miocene, correlating to the European Mammal biozones MN4 to MN9. The study is completed by a discussion on the palaeobiogeography of dinotheres at European scale.


2020 ◽  
Vol 43 (1) ◽  
pp. e2 ◽  
Author(s):  
Christian Püntener ◽  
Jérémy Anquetin ◽  
Jean-Paul Billon-Bruyat

Sign in / Sign up

Export Citation Format

Share Document