COMPLEX MAGMA MIXING IN THE LOWER CRUST RECORDED BY MAJOR AND TRACE ELEMENT ZONING IN HIGH-PRESSURE AMPHIBOLE: KLAMATH MOUNTAIN PROVINCE, NORTHERN CALIFORNIA

2017 ◽  
Author(s):  
Calvin G. Barnes ◽  
◽  
Kevin Werts ◽  
Melanie A. Barnes
2020 ◽  
Author(s):  
C.G. Barnes ◽  
M.A. Barnes

Table S1: Locations and lithology of analyzed samples. Table S2: Calculated temperatures and pressures of augite and amphibole crystallization. Table S3: Major-element compositions of clinopyroxene. Table S4: Major-element compositions of amphibole. Table S5: Trace-element compositions of clinopyroxene and amphibole. Table S6: Bulk-rock compositions of the Forks of Salmon pluton.<br>


Geosphere ◽  
2020 ◽  
Vol 16 (4) ◽  
pp. 1058-1081
Author(s):  
Calvin G. Barnes ◽  
Melanie A. Barnes

Abstract Arc magmatism was widespread in the Cordillera of North America during Middle Jurassic time. The predominant representative of this arc magmatism in the Klamath Mountain province is the western Hayfork terrane (WHT). This terrane is primarily metasedimentary, consisting mainly of crystal-lithic arenite, argillitic sediments and lahar deposits, rare lavas, and sparse quartz-rich arenite. Because lavas are rare, petrologic study using bulk-rock compositions is restricted to analysis of cobbles in lahar deposits. Moreover, the WHT underwent greenschist-facies regional metamorphism with consequent modification of bulk-rock compositions. However, many of the sandstones preserve igneous clinopyroxene and calcic amphibole, which were phenocrysts in the original volcanic rocks. Major- and trace-element compositions of the magmatic pyroxene and amphibole permit reconstruction of the range of rock types eroded from the arc, specifically scant basalt, volumetrically dominant basaltic andesite and andesite, and smaller but significant amounts of dacite and rhyodacite. Eruptive temperatures reached ∼1180 °C and may have been as low as ∼800 °C on the basis of pyroxene and amphibole thermometry, with most eruptive temperatures &gt;1000 °C. On the basis of augite compositions, WHT magmatism is divided into two suites. One features high-Mg augite with high abundances of Cr and Sr, high Sr/Y and Nd/Yb values, and low Y and heavy rare-earth elements (REE). These compositions are typical of high-Mg andesite and dacite suites in which garnet is a residual mineral, most probably in a metasomatized upper mantle setting. The other suite contains augite with lower Sr, Sr/Y, and Nd/Yb; these features are typical of normal calc-alkaline magmas. Augite from a coeval pluton emplaced inboard of the western Hayfork outcrop belt is similar to augite from the low-Sr group of WHT samples. In contrast, augite from the Ironside Mountain pluton, previously considered the plutonic equivalent of WHT sediments, is Fe-rich, with low Cr and Sr and relatively high Zr and REE. Previous suggestions that the Ironside Mountain pluton is correlative with the WHT are not supported by these data. The magmatic diversity of the WHT is typical of the modern Aleutian and Cascade arcs, among others, and could reflect subduction of relatively young oceanic lithosphere or fragmentation of the subduction slab. Although we favor the former setting, present data cannot rule out the latter. The presence of scant quartz-rich sedimentary rocks within the predominantly volcanogenic WHT is consistent with deposition as a sedimentary apron associated with a west-facing magmatic arc with late-stage input from cratonal sources. The results of this study indicate that detailed petrographic study of arc-derived sedimentary rocks, including major- and trace-element analysis of preserved magmatic phases, yields information about magmatic affinities, processes, and temperatures.


2020 ◽  
Author(s):  
C.G. Barnes ◽  
M.A. Barnes

<div>Figure S1: Representative structural section of western Hayfork terrane in the Boise Saddle area, with a lower-hemisphere stereogram of poles to bedding. Figure S2: Outcrop photos of western Hayfork terrane taken along the measured section indicated in Figure 1. A. Cobble-rich lahar deposit. B. Laminated crystal-lithic arenite. Table S1: Locations and lithology of analyzed samples. Table S2: Calculated temperatures and pressures of augite and amphibole crystallization. Table S3: Major-element compositions of clinopyroxene. Table S4: Major-element compositions of amphibole. Table S5: Trace-element compositions of clinopyroxene and amphibole. Table S6: Bulk-rock compositions of the Forks of Salmon pluton.<br></div><div><br></div>


2020 ◽  
Author(s):  
C.G. Barnes ◽  
M.A. Barnes

Table S1: Locations and lithology of analyzed samples. Table S2: Calculated temperatures and pressures of augite and amphibole crystallization. Table S3: Major-element compositions of clinopyroxene. Table S4: Major-element compositions of amphibole. Table S5: Trace-element compositions of clinopyroxene and amphibole. Table S6: Bulk-rock compositions of the Forks of Salmon pluton.<br>


2021 ◽  
Author(s):  
◽  
Sarah Alicia Martin

<p>Andesitic magmas are the product of a complex interplay of processes including fractional crystallisation, crystal accumulation, magma mixing and crustal assimilation. Recent studies have suggested that andesitic rocks are in many cases a complex mixture of a crystal cargo and melts with more silicic compositions than andesite. In situ glass- and mineral-specific geochemical techniques are therefore key to unravelling the processes and timescales over which andesitic magmas are produced, assembled and transported to the surface. To this end, this thesis presents a detailed in situ glass- and mineral-specific study of six Holocene eruptions (Kaupokonui, Maketawa, Inglewood a and b, and Korito) at Mt Taranaki to investigate the petrogenetic processes responsible for producing these sub-plinian eruptions at this long-lived (130 000 yr) andesitic volcano. Mt Taranaki is an andesitic stratovolcano located on the west coast of New Zealand’s North Island and as such it is distinct from the main subduction related volcanism. Crystal-specific major and trace element data were combined with textural analysis and quantitative modelling of intensive magmatic parameters and crystal residence times to identify distinct mineral populations and constrain the magmatic histories of the crystal populations. Least-squares mixing modelling of glass and phenocryst compositions demonstrates that the andesitic compositions of bulk rock Mt Taranaki eruptives results from mixing of a daciticrhyolitic melt and a complex crystal cargo (plagioclase, pyroxene, amphibole) that crystallised from multiple melts under a wide range of crustal conditions. Magma mixing of compositionally similar end members that mix efficiently also occurred beneath Mt Taranaki, and as such only produced prominent disequilibrium textures in a small proportion of the minerals in the crystal cargo. The chemistry of the earliest crystallising amphibole indicates crystallisation from an andesitic-dacitic melt at depths of ca. 20-25 km, within the lower crust. Magmas then ascended through the crust relatively slowly via a complex magmatic plumbing system. However, most of the crystal cargo formed by decompression-driven crystallisation at depth so 6-10 km, as is indicated by the dominance of oscillatory zoning and the equilibrium obtained between mineral rims and the host glasses. Taranaki magmas recharge on timescales of 1000-2000 yrs. The eruptions investigated here provide a snapshot of the end of one cycle and the beginning of another. The younger Kaupokonui and Maketawa eruptions (ca. 2890 - <1950 yr BP) are the least evolved magmas, record a stronger mixing signal in the crystal cargo, and are volumetrically smaller than the earlier Inglewood a and b and Korito eruptions (ca. 4150-3580 yr BP). The Kaupokonui and Maketawa eruptions may reflect arrival of a new pulse of magma from the lower crust, or that these are early eruptions within a recharge sequence, which have not had as much time to further differentiate and evolve as the earlier Inglewood a and b and Korito eruptions that represent the end of a magma recharge cycle. One of the six investigated eruptions was identified to come from Fantham’s Peak on the basis of its distinctive glass and mineral chemistry and petrology. Glass trace element data indicate that this eurption’s magmatic system was distinct from that of the other main vent Holocene eruptions investigated in this study. Crystal residence times were investigated using Fe-Mg interdiffusion in clinopyroxene and indicate that magma bodies stall in upper crustal storage chambers for timescales of a few months to years. The younger eruptions of the least evolved magmas with the strongest mixing signal return the shortest residence times, which may indicate that magma mixing events occurring a few months before eruption may have been the trigger for these eruptions at Mt Taranaki. Amphibole geospeedometry for these eruptives reveal rapid magma transport from depths of 6-10 km to the surface on timescales of < 1 week.</p>


2021 ◽  
Author(s):  
◽  
Sarah Alicia Martin

<p>Andesitic magmas are the product of a complex interplay of processes including fractional crystallisation, crystal accumulation, magma mixing and crustal assimilation. Recent studies have suggested that andesitic rocks are in many cases a complex mixture of a crystal cargo and melts with more silicic compositions than andesite. In situ glass- and mineral-specific geochemical techniques are therefore key to unravelling the processes and timescales over which andesitic magmas are produced, assembled and transported to the surface. To this end, this thesis presents a detailed in situ glass- and mineral-specific study of six Holocene eruptions (Kaupokonui, Maketawa, Inglewood a and b, and Korito) at Mt Taranaki to investigate the petrogenetic processes responsible for producing these sub-plinian eruptions at this long-lived (130 000 yr) andesitic volcano. Mt Taranaki is an andesitic stratovolcano located on the west coast of New Zealand’s North Island and as such it is distinct from the main subduction related volcanism. Crystal-specific major and trace element data were combined with textural analysis and quantitative modelling of intensive magmatic parameters and crystal residence times to identify distinct mineral populations and constrain the magmatic histories of the crystal populations. Least-squares mixing modelling of glass and phenocryst compositions demonstrates that the andesitic compositions of bulk rock Mt Taranaki eruptives results from mixing of a daciticrhyolitic melt and a complex crystal cargo (plagioclase, pyroxene, amphibole) that crystallised from multiple melts under a wide range of crustal conditions. Magma mixing of compositionally similar end members that mix efficiently also occurred beneath Mt Taranaki, and as such only produced prominent disequilibrium textures in a small proportion of the minerals in the crystal cargo. The chemistry of the earliest crystallising amphibole indicates crystallisation from an andesitic-dacitic melt at depths of ca. 20-25 km, within the lower crust. Magmas then ascended through the crust relatively slowly via a complex magmatic plumbing system. However, most of the crystal cargo formed by decompression-driven crystallisation at depth so 6-10 km, as is indicated by the dominance of oscillatory zoning and the equilibrium obtained between mineral rims and the host glasses. Taranaki magmas recharge on timescales of 1000-2000 yrs. The eruptions investigated here provide a snapshot of the end of one cycle and the beginning of another. The younger Kaupokonui and Maketawa eruptions (ca. 2890 - <1950 yr BP) are the least evolved magmas, record a stronger mixing signal in the crystal cargo, and are volumetrically smaller than the earlier Inglewood a and b and Korito eruptions (ca. 4150-3580 yr BP). The Kaupokonui and Maketawa eruptions may reflect arrival of a new pulse of magma from the lower crust, or that these are early eruptions within a recharge sequence, which have not had as much time to further differentiate and evolve as the earlier Inglewood a and b and Korito eruptions that represent the end of a magma recharge cycle. One of the six investigated eruptions was identified to come from Fantham’s Peak on the basis of its distinctive glass and mineral chemistry and petrology. Glass trace element data indicate that this eurption’s magmatic system was distinct from that of the other main vent Holocene eruptions investigated in this study. Crystal residence times were investigated using Fe-Mg interdiffusion in clinopyroxene and indicate that magma bodies stall in upper crustal storage chambers for timescales of a few months to years. The younger eruptions of the least evolved magmas with the strongest mixing signal return the shortest residence times, which may indicate that magma mixing events occurring a few months before eruption may have been the trigger for these eruptions at Mt Taranaki. Amphibole geospeedometry for these eruptives reveal rapid magma transport from depths of 6-10 km to the surface on timescales of < 1 week.</p>


2020 ◽  
Author(s):  
C.G. Barnes ◽  
M.A. Barnes

<div>Figure S1: Representative structural section of western Hayfork terrane in the Boise Saddle area, with a lower-hemisphere stereogram of poles to bedding. Figure S2: Outcrop photos of western Hayfork terrane taken along the measured section indicated in Figure 1. A. Cobble-rich lahar deposit. B. Laminated crystal-lithic arenite. Table S1: Locations and lithology of analyzed samples. Table S2: Calculated temperatures and pressures of augite and amphibole crystallization. Table S3: Major-element compositions of clinopyroxene. Table S4: Major-element compositions of amphibole. Table S5: Trace-element compositions of clinopyroxene and amphibole. Table S6: Bulk-rock compositions of the Forks of Salmon pluton.<br></div><div><br></div>


2019 ◽  
Author(s):  
Calvin G. Barnes ◽  
◽  
Rachel Hudson ◽  
Kevin Werts ◽  
Aaron S. Yoshinobu

Sign in / Sign up

Export Citation Format

Share Document