ESTIMATING CLIMATE CHANGE IMPACTS ON WATER RESOURCES IN ARIZONA'S UPPER SANTA CRUZ RIVER BASIN: THE ROLE OF CLIMATE MODEL DOWNSCALING

2019 ◽  
Author(s):  
Eve Halper ◽  
◽  
Eylon Shamir
2015 ◽  
Vol 521 ◽  
pp. 18-33 ◽  
Author(s):  
Eylon Shamir ◽  
Sharon B. Megdal ◽  
Carlos Carrillo ◽  
Christopher L. Castro ◽  
Hsin-I Chang ◽  
...  

2021 ◽  
Vol 592 ◽  
pp. 125614
Author(s):  
Daniel Mengistu ◽  
Woldeamlak Bewket ◽  
Alessandro Dosio ◽  
Hans-Juergen Panitz

2016 ◽  
pp. 32-37 ◽  
Author(s):  
David Dorchies ◽  
Guillaume Thirel ◽  
Charles Perrin ◽  
Jean-Claude Bader ◽  
Régis Thepot ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Zhiyong Wu ◽  
Heng Xiao ◽  
Guihua Lu ◽  
Jinming Chen

The water resources in the Yellow River basin (YRB) are vital to social and economic development in North and Northwest China. The basin has a marked continental monsoon climate and its water resources are especially vulnerable to climate change. Projected runoff in the basin for the period from 2001 to 2030 was simulated using the variable infiltration capacity (VIC) macroscale hydrology model. VIC was first calibrated using observations and then was driven by the precipitation and temperature projected by the RegCM3 high-resolution regional climate model under the IPCC scenario A2. Results show that, under the scenario A2, the mean annual temperature of the basin could increase by 1.6°C, while mean annual precipitation could decrease by 2.6%. There could be an 11.6% reduction in annual runoff in the basin according to the VIC projection. However, there are marked regional variations in these climate change impacts. Reductions of 13.6%, 25.7%, and 24.6% could be expected in the regions of Hekouzhen to Longmen, Longmen to Sanmenxia, and Sanmenxia to Huayuankou, respectively. Our study suggests that the condition of water resources in the YRB could become more severe in the period from 2001 to 2030 under the scenario A2.


2015 ◽  
Vol 16 (2) ◽  
pp. 762-780 ◽  
Author(s):  
Pablo A. Mendoza ◽  
Martyn P. Clark ◽  
Naoki Mizukami ◽  
Andrew J. Newman ◽  
Michael Barlage ◽  
...  

Abstract The assessment of climate change impacts on water resources involves several methodological decisions, including choices of global climate models (GCMs), emission scenarios, downscaling techniques, and hydrologic modeling approaches. Among these, hydrologic model structure selection and parameter calibration are particularly relevant and usually have a strong subjective component. The goal of this research is to improve understanding of the role of these decisions on the assessment of the effects of climate change on hydrologic processes. The study is conducted in three basins located in the Colorado headwaters region, using four different hydrologic model structures [PRMS, VIC, Noah LSM, and Noah LSM with multiparameterization options (Noah-MP)]. To better understand the role of parameter estimation, model performance and projected hydrologic changes (i.e., changes in the hydrology obtained from hydrologic models due to climate change) are compared before and after calibration with the University of Arizona shuffled complex evolution (SCE-UA) algorithm. Hydrologic changes are examined via a climate change scenario where the Community Climate System Model (CCSM) change signal is used to perturb the boundary conditions of the Weather Research and Forecasting (WRF) Model configured at 4-km resolution. Substantial intermodel differences (i.e., discrepancies between hydrologic models) in the portrayal of climate change impacts on water resources are demonstrated. Specifically, intermodel differences are larger than the mean signal from the CCSM–WRF climate scenario examined, even after the calibration process. Importantly, traditional single-objective calibration techniques aimed to reduce errors in runoff simulations do not necessarily improve intermodel agreement (i.e., same outputs from different hydrologic models) in projected changes of some hydrological processes such as evapotranspiration or snowpack.


2017 ◽  
Vol 189 ◽  
pp. 1-10 ◽  
Author(s):  
Mou Leong Tan ◽  
Ab Latif Ibrahim ◽  
Zulkifli Yusop ◽  
Vivien P. Chua ◽  
Ngai Weng Chan

2015 ◽  
Vol 527 ◽  
pp. 1190
Author(s):  
Eylon Shamir ◽  
Sharon B. Megdal ◽  
Carlos Carrillo ◽  
Christopher L. Castro ◽  
Hsin-I Chang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document