Late Mesozoic intraplate rhyolitic volcanism in the North China Craton: Far-field effect of the westward subduction of the Paleo-Pacific Plate

2019 ◽  
Vol 132 (1-2) ◽  
pp. 291-309 ◽  
Author(s):  
Fan Yang ◽  
M. Santosh ◽  
Sung Won Kim ◽  
Hongying Zhou ◽  
Youn Joong Jeong

Abstract The Late Mesozoic was characterized by extensive volcanism, crustal extension, lithospheric thinning, and craton destruction in the North China Craton (NCC). Here we investigate the petrology, whole-rock geochemistry, zircon U-Pb geochronology, and Lu-Hf isotope of rhyolitic rocks from the Chicheng region of China along the northern margin of the NCC to constrain their petrogenesis, magma evolution, and associated geodynamic processes. The newly obtained zircon U-Pb age data constrain the eruption age of rhyolitic rocks at ca. 144–114 Ma during the Early Cretaceous with multiple magmatic pulses at ca. 141, ca. 137, and ca. 130 Ma as defined by the age peaks. Zircon Hf isotopic data show markedly negative εHf(t) values of –23.0 to –11.8, and corresponding Hf crustal model ages (TDMC) are in the range of ca. 2650 to 1944 Ma, suggesting magma derivation through melting of Paleoproterozoic crustal materials with minor input of reworked Neoarchean components. Geochemically, the rhyolitic rocks correspond to A-type granites, with a mixed arc- and subduction-related signature, although generated in an extensional intraplate setting through partial melting of the mafic lower crust and upper crustal fractional crystallization. We correlate the late Mesozoic intraplate volcanism to the westward subduction of the Paleo-Pacific Plate and its far-field effect. Lithospheric extension and slab rollback of the Paleo-Pacific Plate are considered as the main triggers for the multiple eruptions. The late Mesozoic volcanism in the study area and adjacent regions also broadly coincide with the tectonic transition from the Paleozoic Paleo-Asian to Mesozoic Paleo-Pacific subduction realm with concomitant compressional to extensional tectonic regime.

Minerals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 723 ◽  
Author(s):  
Ming Li ◽  
Xin Zhang ◽  
Liang Han ◽  
En-Pu Gong ◽  
Guo-Guang Wang

The Jiangjiatun Mo deposit is a recently discovered molybdenum deposit in the easternmost area of the Yan-Liao metallogenic belt, North China Craton. Quartz vein-type Mo mineralization at Jiangjiatun is associated with the granitic porphyry stock. In this study, we performed a combined zircon U–Pb and molybdenite Re-Os dating study on the Jiangjiatun Mo deposit to constrain its mineralization age and metallogenic setting. Laser ablation inductively coupled mass spectrometry (LA-ICP-MS) zircon U–Pb analyses suggest that the granitic porphyry was formed during the Late Jurassic, with a weighted mean 206Pb/238U age of 154 ± 1 Ma (2σ). Seven molybdenite samples from the Jiangjiatun deposit yield a 187Re–187Os isochron age of 157.5 ± 0.5 Ma (2σ). The discrepancy between the U–Pb and Re–Os ages may be explained (1) by the “2 sigma” measurement uncertainty, or (2) by the different closure temperature of the Re–Os isotopic system of molybdenite and the U–Pb isotopic system of zircon. Even though there is a small difference between the zircon U–Pb and molybdenite Re–Os ages, we can clearly identify a Late Jurassic Mo mineralization event at Jiangjiatun in the easternmost area of the Yan-Liao metallogenic belt. The moderate Re concentrations (13 to 73 ppm) in molybdenite from the Jiangjiatun Mo deposit are indicative of the involvement of the mantle materials into the Mo mineralization. The Jiangjiatun Mo deposit is likely the result of the subduction of the paleo-Pacific plate beneath the North China Craton during the Late Jurassic. Combined with the available published regional robust geochronological data, we proposed that the Mo mineralization in the Yan-Liao belt is in good agreement with the tectonic transition from Late Triassic post-collision extensional setting due to the closure of the paleo-Asian ocean to the Yanshanian (J–K1) continental arc setting in response to the subduction of the paleo-Pacific Plate. The study highlights that regional mineralization may provide an excellent constraint on tectonic change.


2020 ◽  
Author(s):  
Junchen Liu ◽  
Yitian Wang ◽  
Jingwen Mao ◽  
Wei Jian ◽  
Shikang Huang ◽  
...  

Abstract The Xiaoqinling gold field, located along the southern margin of the North China craton, is the second largest gold producer in China, which comprises more than 1,200 auriferous quartz veins with a proven gold reserve of at least 800 tons. Previously, the absolute age of the gold metallogenesis in this area has not been well defined due to the lack of suitable dating minerals. This study presents new in situ laser ablation-inductively coupled plasma-mass spectrometry U-Pb ages of coexisting hydrothermal monazite and rutile for the Fancha gold deposit in this area, which yielded 206Pb/238U ages of 127.5 ± 0.7 Ma (n = 65, mean square of weighted deviates [MSWD] = 1.8) and 129.7 ± 4.3 Ma (n = 37, MSWD = 1.4), respectively. Both ages overlap within analytical uncertainty at the 2σ level of significance, suggesting that both gold-bearing veins were emplaced at ca. 128 Ma. Mineralogical observations indicate that the monazite and rutile precipitated simultaneously with gold from the hydrothermal fluid. Our new data, combined with recently published monazite age, define a more precise gold episode, demonstrating that the gold endowment of the Xiaoqinling area was formed during a relatively brief period at ca. 130 to 127 Ma. We suggest that auriferous fluids were generated as a result of interactions between the enriched mantle and the lower crust, which was driven by westward flat slab subduction of the Paleo-Pacific plate during the late Mesozoic. The peak of lithospheric thinning during the postsubduction may have led to the rapid release of gold from the fertilized mantle. Consequently, the large number of gold-bearing veins in the Xiaoqinling area may ultimately be related to the tectonic evolution and mantle fluid processes that occurred during Early Cretaceous lithospheric extension.


2002 ◽  
Vol 37 (3) ◽  
pp. 326-351 ◽  
Author(s):  
Craig J. Hart ◽  
Richard J. Goldfarb ◽  
Yumin Qiu ◽  
Lawrence Snee ◽  
Lance D. Miller ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document