intracontinental deformation
Recently Published Documents


TOTAL DOCUMENTS

66
(FIVE YEARS 25)

H-INDEX

19
(FIVE YEARS 1)

2021 ◽  
Vol 358 ◽  
pp. 106141
Author(s):  
Caue R. Cioffi ◽  
Vinícius T. Meira ◽  
Ricardo I.F. Trindade ◽  
Pierre Lanari ◽  
Carlos E. Ganade ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wilfried Jokat ◽  
Tabea Altenbernd ◽  
Graeme Eagles ◽  
Wolfram H. Geissler

AbstractPlate kinematic models propose that India and Sri Lanka (INDSRI) separated from Antarctica by extremely slow seafloor spreading that started in early Cretaceous times, and that a long-distance ridge jump left a continental fragment stranded off the Antarctic margin under the Southern Kerguelen Plateau 1-3. Here, we present newly acquired magnetic and deep wide-angle seismic data that require a fundamental re-evaluation of these concepts. The new data clearly define the onset of oceanic crust in the Enderby Basin and off southern Sri Lanka, and date its formation with unprecedented confidence. The revised timing indicates that India and Sri Lanka detached from Antarctica earlier in the east than in the west. Furthermore, no compelling evidence for an extinct spreading axis is found in the Enderby Basin. A refined plate motion model indicates that India and Sri Lanka departed from Antarctica without major rift jumps, but by the action of three spreading ridges with different timings and velocities that must have been accommodated by significant intracontinental deformation.


2021 ◽  
pp. jgs2020-121
Author(s):  
Jack Gillespie ◽  
Stijn Glorie ◽  
Gilby Jepson ◽  
Fedor Zhimulev ◽  
Dmitriy Gurevich ◽  
...  

Central Asia hosts the Tianshan, the largest intracontinental mountain belt in the world, which experienced major reactivation and uplift since the Oligocene in response to the collision of India with Asia. This reactivation was focused around pre-existing structures inherited from the Paleozoic tectonic history of the region. The significant Cenozoic tectonic reworking of Central Asia complicates efforts to understand earlier phases of intracontinental tectonics during the late Paleozoic and Mesozoic. The Tarbagatai Mountains of eastern Kazakhstan record a thermotectonic history that provides insight into the timing and distribution of intracontinental tectonic activity in Central Asia prior to the India-Eurasia collision. Apatite fission track and (U-Th-Sm)/He analysis of igneous samples from the Tarbagatai Mountains reveals two episodes of cooling as a result of exhumation following Paleozoic amalgamation. Initial intracontinental deformation during the Late Permian drove exhumation synchronous with activity along newly formed strike-slip faults spanning the Central Asian Orogenic Belt. The major Chingiz-Tarbagatai Fault was reactivated during the Early Cretaceous, driving localised exhumation along the fault. The relative lack of Cenozoic tectonic activity in the Tarbagatai Mountains means they provide unique insight into the broader thermotectonic evolution of Central Asia during the late Paleozoic and Mesozoic.Supplementary material: Detailed thermochronological data, including plots and tables can be found in the supplementary data https://doi.org/10.6084/m9.figshare.c.5414555.


2021 ◽  
pp. 1-23
Author(s):  
Songnan Liu ◽  
Yu Wang ◽  
Huimin Ma ◽  
Tao Qian

Abstract The theory of plate tectonics suggests that deformation occurs mainly along plate boundaries; however, compression can result in the formation of orogens and basins within intracontinental settings. During these two tectonic processes, the sedimentation and environmental changes occur in response to marginal and intracontinental deformation. Early Jurassic – Early Cretaceous deformation and basin formation along the Qinling orogenic belt and the northwestern Sichuan Basin in central–SW China are ideal for investigating a reactivated tectonic belt and basin formation. We studied the Lower Jurassic – Lower Cretaceous sedimentary sequences and structures along the northwestern margin of the Sichuan Basin, and obtained detrital zircon U–Pb ages for these rocks. The structures show that deformation migrated SE-wards and S-wards into the Sichuan Basin along the Longmen Shan, Micang Shan and Daba Shan tectonic belts during middle–late Mesozoic time. The Lower Jurassic oligomictic conglomerates have a smaller grain size and thicken towards the south, indicating protracted transport from a northern source. The conglomerates deposited near-source record post-orogenic south-vergent thrusting during the Late Triassic – Early Jurassic epochs. The Lower Cretaceous conglomerates and sandstones have multiple sources, which indicate that they were rapidly deposited near their source, synchronous with thrusting that occurred in response to coeval SE-wards and S-wards thrusting in the Longmen Shan and Daba Shan tectonic belts during the Late Jurassic – Early Cretaceous epochs. Detrital zircon grains from the Lower Jurassic – Lower Cretaceous sedimentary rocks yielded age peaks of 2600–2200, 1850–1600, 850–700, 540–400, 250–180 and 180–140 Ma. A comparison of these ages with those of surrounding exposed rocks indicates that the sediments in the northwestern Sichuan Basin were supplied from the Qinling orogenic belt, the northwestern Yangtze Block, the south margin of the North China Block and the Songpan–Garzê Terrane. The youngest peaks of detrital zircon U–Pb ages at 207 and 159 Ma constrain the two stages of intracontinental shortening and highlight the link between intracontinental deformation and sedimentation.


China Geology ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 1-3
Author(s):  
Xiang Qin ◽  
◽  
Xuan-hua Chen ◽  
Zhao-gang Shao ◽  
Yi-ping Zhang ◽  
...  

2020 ◽  
Vol 55 (11) ◽  
pp. 7517-7530
Author(s):  
Xian‐Chun Tang ◽  
Chen Ji ◽  
Qiu‐Huan Li ◽  
Ying Wu ◽  
Kai‐Jun Zhang

Sign in / Sign up

Export Citation Format

Share Document