Structural styles, deformation, and uplift of the Olympic Mountains, Washington: Implications for accretionary wedge deformation

Author(s):  
M. James Aldrich

The Olympic subduction complex is the exposed subaerial Cascadia accretionary wedge in the Olympic Mountains of Washington State. Uplift of the mountains has been attributed to two competing models: margin-normal deformation from frontal accretion and underplating, and margin-parallel deformation from the clockwise rotation and northward movement of the Oregon Coast Range block compressing the Olympic Mountains block against the Canadian Coast Range. East-northeast−oriented folds and Quaternary thrust faults and paleostress analysis of faults in the Coastal Olympic subduction complex, west of the subduction complex massif, provide new evidence for north-south shortening in the Coastal Olympic subduction complex that fills a large spatial gap in the north-south shortening documented in prior studies, substantially strengthening the block rotation model. These new data, together with previous studies that document north-south shortening in the subduction complex and at numerous locations in the Coast Range terrane peripheral to the complex, indicate that margin-parallel deformation of the Cascadia forearc has contributed significantly to uplift of the Olympic Mountains. Coastal Olympic subduction complex shallow-level fold structural style and deformation mechanisms provide a template for analyzing folding processes in other accretionary wedges. Similar-shaped folds in shallow-level Miocene turbidite sediments of the Coastal Olympic subduction complex formed in two shortening phases not previously recognized in accretionary wedges. Folds began forming by bed-parallel flow of sediment into developing hinges. When the strata could no longer accommodate shortening by flexural flow, further shortening was taken up by flexural slip. Similar-shaped folds in the deeper accretionary wedge rocks of the subduction complex massif have a well-developed axial-surface cleavage that facilitated shear folding with sediment moving parallel to the axial surface into the hinges, a structural style that is common to accretionary wedges. The pressure-temperature conditions and depth at which the formation of similar folds transitions from bed-parallel to axial-surface−parallel deformation are bracketed.

2021 ◽  
pp. 187-243
Author(s):  
John M. Armentrout

ABSTRACT This field guide reviews 19 sites providing insight to four Cenozoic deformational phases of the Cascadia forearc basin that onlaps Siletzia, an oceanic basaltic terrane accreted onto the North American plate at 51–49 Ma. The field stops visit disrupted slope facies, prodelta-slope channel complexes, shoreface successions, and highly fossiliferous estuarine sandstones. New detrital zircon U-Pb age calibration of the Cenozoic formations in the Coos Bay area and the Tyee basin at-large, affirm most previous biostratigraphic correlations and support that some of the upper-middle Eocene to Oligocene strata of the Coos Bay stratigraphic record represents what was differentially eroded off the Coast Range crest during ca. 30–25 Ma and younger deformations. This suggests that the strata along Cape Arago are a western “remnant” of the Paleogene Tyee basin. Zircon ages and biostratigraphic data encourages the extension of the Paleogene Coos Bay and Tyee forearc basin westward beyond the Fulmar fault and offshore Pan American and Fulmar wells. Integration of outcrop paleocurrents with anisotropy of magnetic susceptibility data from the middle Eocene Coaledo Formation affirms south-southeast to north-northwest sediment transport in current geographic orientation. Preliminary detrital remanent magnetism data show antipodal directions that are rotated clockwise with respect to the expected Eocene field direction. The data suggest the Eocene paleo-shoreline was relatively north-south similar to the modern shoreline, and that middle Eocene sediment transport was to the west in the area of present-day Coos Bay. A new hypothesis is reviewed that links the geographic isolation of the Coos Bay area from rivers draining the ancestral Cascades arc to the onset of uplift of the southern Oregon Coast Range during the late Oligocene to early Miocene.


1994 ◽  
Author(s):  
R.E. Wells ◽  
P.D. Snavely ◽  
N.S. MacLeod ◽  
M.M. Kelly ◽  
M.J. Parker

2017 ◽  
Author(s):  
Logan R. Wetherell ◽  
◽  
Lisa L. Ely ◽  
Megan Walsh ◽  
Joshua Roering ◽  
...  

2019 ◽  
Author(s):  
Logan R. Wetherell ◽  
◽  
Lisa L. Ely ◽  
Joshua Roering ◽  
Megan Walsh ◽  
...  

1968 ◽  
Vol 266 (6) ◽  
pp. 454-481 ◽  
Author(s):  
P. D. Snavely ◽  
N. S. MacLeod ◽  
H. C. Wagner

GCB Bioenergy ◽  
2015 ◽  
Vol 8 (2) ◽  
pp. 357-370 ◽  
Author(s):  
Megan K. Creutzburg ◽  
Robert M. Scheller ◽  
Melissa S. Lucash ◽  
Louisa B. Evers ◽  
Stephen D. LeDuc ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document