olympic mountains
Recently Published Documents


TOTAL DOCUMENTS

141
(FIVE YEARS 18)

H-INDEX

30
(FIVE YEARS 1)

Author(s):  
Andrew DeLaFrance ◽  
Lynn McMurdie ◽  
Angela Rowe

AbstractOver mountainous terrain, windward enhancement of stratiform precipitation results from a combination of warm-rain and ice-phase processes. In this study, ice-phase precipitation processes are investigated within frontal systems during the Olympic Mountains Experiment (OLYMPEX). An enhanced layer of radar reflectivity (ZH) above the melting level bright band (i.e., a secondary ZH maximum) is observed over both the windward slopes of the Olympic Mountains and the upstream ocean, with a higher frequency of occurrence and higher ZH values over the windward slopes indicating an orographic enhancement of ice-phase precipitation processes. Aircraft-based in situ observations are evaluated for the 01-02 and 03 December 2015 orographically-enhanced precipitation events. Above the secondary ZH maximum, the hydrometeors are primarily horizontally oriented dendritic and branched crystals. Within the secondary ZH maximum, there are high concentrations of large (> ~2 mm diameter) dendrites, plates, and aggregates thereof, with a significant degree of riming. In both events, aggregation and riming appear to be enhanced within a turbulent layer near sheared flow at the top of a low-level jet impinging on the terrain and forced to rise above the melting level. Based on windward ground sites at low-, mid-, and high-elevations, secondary ZH maxima periods during all of OLYMPEX are associated with increased rain rates and larger mass-weighted mean drop diameters compared to periods without a secondary ZH maximum. This result suggests that precipitation originating from secondary ZH maxima layers may contribute to enhanced windward precipitation accumulations through the formation of large, dense particles that accelerate fallout.


2021 ◽  
Author(s):  
Andrew G. Fountain ◽  
Christina Gray ◽  
Bryce Glenn ◽  
Brian Menounos ◽  
Justin Pflug ◽  
...  
Keyword(s):  
The Past ◽  

2021 ◽  
Author(s):  
Andrew G. Fountain ◽  
Christina Gray ◽  
Bryce Glenn ◽  
Brian Menounos ◽  
Justin Pflug ◽  
...  
Keyword(s):  
The Past ◽  

Author(s):  
M. James Aldrich

The Olympic subduction complex is the exposed subaerial Cascadia accretionary wedge in the Olympic Mountains of Washington State. Uplift of the mountains has been attributed to two competing models: margin-normal deformation from frontal accretion and underplating, and margin-parallel deformation from the clockwise rotation and northward movement of the Oregon Coast Range block compressing the Olympic Mountains block against the Canadian Coast Range. East-northeast−oriented folds and Quaternary thrust faults and paleostress analysis of faults in the Coastal Olympic subduction complex, west of the subduction complex massif, provide new evidence for north-south shortening in the Coastal Olympic subduction complex that fills a large spatial gap in the north-south shortening documented in prior studies, substantially strengthening the block rotation model. These new data, together with previous studies that document north-south shortening in the subduction complex and at numerous locations in the Coast Range terrane peripheral to the complex, indicate that margin-parallel deformation of the Cascadia forearc has contributed significantly to uplift of the Olympic Mountains. Coastal Olympic subduction complex shallow-level fold structural style and deformation mechanisms provide a template for analyzing folding processes in other accretionary wedges. Similar-shaped folds in shallow-level Miocene turbidite sediments of the Coastal Olympic subduction complex formed in two shortening phases not previously recognized in accretionary wedges. Folds began forming by bed-parallel flow of sediment into developing hinges. When the strata could no longer accommodate shortening by flexural flow, further shortening was taken up by flexural slip. Similar-shaped folds in the deeper accretionary wedge rocks of the subduction complex massif have a well-developed axial-surface cleavage that facilitated shear folding with sediment moving parallel to the axial surface into the hinges, a structural style that is common to accretionary wedges. The pressure-temperature conditions and depth at which the formation of similar folds transitions from bed-parallel to axial-surface−parallel deformation are bracketed.


Author(s):  
Nicolas Harrichhausen ◽  
Kristin D. Morell ◽  
Christine Regalla ◽  
Scott E. K. Bennett ◽  
Lucinda J. Leonard ◽  
...  

ABSTRACT New paleoseismic trenching indicates late Quaternary oblique right-lateral slip on the Leech River fault, southern Vancouver Island, Canada, and constrains permanent forearc deformation in northern Cascadia. A south-to-north reduction in northward Global Navigation Satellite System velocities and seismicity across the Olympic Mountains, Strait of Juan de Fuca (JDF), and the southern Strait of Georgia, has been used as evidence for permanent north–south crustal shortening via thrust faulting between a northward migrating southern forearc and rigid northern backstop in southwestern Canada. However, previous paleoseismic studies indicating late Quaternary oblique right-lateral slip on west-northwest-striking forearc faults north of the Olympic Mountains and in the southern Strait of Georgia are more consistent with forearc deformation models that invoke oroclinal bending and(or) westward extrusion of the Olympic Mountains. To help evaluate strain further north across the Strait of JDF, we present the results from two new paleoseismic trenches excavated across the Leech River fault. In the easternmost Good Hope trench, we document a vertical fault zone and a broad anticline deforming glacial till. Comparison of till clast orientations in faulted and undeformed glacial till shows evidence for postdeposition faulted till clast rotation, indicating strike-slip shear. The orientation of opening mode fissuring during surface rupture is consistent with right-lateral slip and the published regional SHmax directions. Vertical separation and the formation of scarp-derived colluvium along one fault also indicate a dip-slip component. Radiocarbon charcoal dating within offset glacial till and scarp-derived colluvium suggest a single surface rupturing earthquake at 9.4±3.4  ka. The oblique right-lateral slip sense inferred in the Good Hope trench is consistent with slip kinematics observed on other regional west-northwest-striking faults and indicates that these structures do not accommodate significant north–south shortening via thrust faulting.


Author(s):  
Joseph P. Zagrodnik ◽  
Lynn McMurdie ◽  
Robert Conrick

AbstractHigh-resolution numerical model simulations of six different cases during the 2015-16 Olympic Mountains Experiment (OLYMPEX) are used to examine dynamic and microphysical precipitation processes on both the full barrier-scale and smaller sub-barrier scale ridges and valleys. The degree to which stratiform precipitation within mid-latitude cyclones is modified over the coastal Olympic Mountains range was found to be strongly dependent on the synoptic environment within a cyclone’s prefrontal and warm sectors. In prefrontal sectors, barrier-scale ascent over stably stratified flow resulted in enhanced ice production aloft at the coast and generally upstream of higher terrain. At low levels, stable flow orientated transverse to sub-barrier scale windward ridges generated small-scale mountain waves, which failed to produce enough cloud water to appreciably enhance precipitation on the scale of the windward ridges. In moist-neutral warm sectors, the upstream side of the barrier exhibited broad ascent oriented along the windward ridges with lesser regions of adjacent downward motion. Significant quantities of cloud water were produced over coastal foothills with further production of cloud water on the lower-windward slopes. Ice production above the melting layer occurred directly over the barrier where the ice particles were further advected downstream by cross-barrier winds and spilled over into the lee. The coastal foothills were found to be essential for the production and maintenance of cloud water upstream of the primary topographic barrier, allowing additional time for hydrometeors to grow to precipitation size by autoconversion and collection before falling out on the lower-windward slopes.


Atmosphere ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 756
Author(s):  
Saisai Ding ◽  
Greg M. McFarquhar ◽  
Stephen W. Nesbitt ◽  
Randy J. Chase ◽  
Michael R. Poellot ◽  
...  

Retrievals of ice cloud properties require accurate estimates of ice particle mass. Empirical mass–dimensional (m–D) relationships in the form m = a D b are widely used and usually universally applied across the complete range of particle sizes. For the first time, the dependence of a and b coefficients in m–D relationships on median mass diameter (Dmm) is studied. Using combined cloud microphysical data collected during the Olympic Mountains Experiment and coincident observations from Airborne Precipitation Radar Third Generation, Dmm-dependent (a, b) coefficients are derived and represented as surfaces of equally plausible solutions determined by some tolerance in the chi-squared difference χ 2 that minimizes the difference between observed and retrieved radar reflectivity. Robust dependences of a and b on Dmm are shown with both parameters significantly decreasing with Dmm, leading to smaller effective densities for larger Dmm ranges. A universally applied constant m–D relationship overestimates the mass of large aggregates when Dmm is between 3–6 mm and temperatures are between −15–0 °C. Multiple m–D relations should be applied for different Dmm ranges in retrievals and simulations to account for the variability of particle sizes that are responsible for the mass and thus for the variability of particle shapes and densities.


2019 ◽  
Vol 92 (3) ◽  
pp. 708-724
Author(s):  
Cianna E. Wyshnytzky ◽  
Tammy M. Rittenour ◽  
Glenn D. Thackray ◽  
James Shulmeister

AbstractThe geomorphology and stratigraphy of the South Fork Hoh River (SF Hoh), Olympic Mountains, Washington, allow for greater understanding of Marine Oxygen Isotope Stage 2 (MIS 2) ice fluctuations, glacial dynamics, and sedimentation. Age control from optically stimulated luminescence and radiocarbon dating constrains deposited sediments associated with four Late Pleistocene ice-marginal positions that formed under reduced ice volume conditions compared with MIS 3–5 glaciers in the same drainage. The earliest MIS 2 ice margin extended into the main Hoh River valley (pre–SF 1, 28 ka to >23.0 ka). After retreat, the ice occupied three closely spaced ice-marginal positions (SF 1–3) that range in age from 22.0 ka to shortly after 18.7 ka. While the SF 1 and SF 3 positions were previously identified as the Twin Creeks I and II positions, the intermediate SF 2 position had not been recognized. Moraines are composed of poorly sorted, but stratified, sediment and few tills. Diamicton units show evidence of water reworking. This research documents a detailed record of MIS 2 glaciation in a maritime setting in western North America and provides evidence of rapid MIS 2 ice-marginal fluctuations that likely reflect responses to millennial-scale climatic fluctuations and may be relevant to understanding other complex MIS 2 moraine sequences.


Sign in / Sign up

Export Citation Format

Share Document