Juvenile hafnium isotopic compositions recording a late Carboniferous−Early Triassic retreating subduction in the southern Central Asian Orogenic Belt: A case study from the southern Alxa

Author(s):  
Rongguo Zheng ◽  
Jinyi Li ◽  
Jin Zhang

Two successive and parallel magmatic arcs within the southern Alxa provide an ideal area to examine the influence of tectonic switching on temporal and spatial distribution of magmatism within accretionary orogens. This study presents new geochronological and geochemical data for Yingen and Quagu plutons from the southern Alxa, located in the southern Central Asian Orogenic Belt. Late Permian Yingen granitic dikes (ca. 252 Ma) have depleted whole-rock Nd isotopic compositions, high Sr, low Y and Yb, and high Sr/Y ratios, all of which indicate they were generated by the partial melting of subducted young/hot oceanic slab. The Middle Permian (271 Ma) Yingen hosting granites contain elevated contents of Nb and Zr, and have high 10,000 × Ga/Al ratios, suggesting that they resulted from mixing between Neoproterozoic crust-derived felsic magmas and depleted mantle-derived mafic magmas. The Quagu pluton yields ca. 271−262 Ma zircon U-Pb ages and has an adakitic high-Mg diorite-like geochemical composition, suggesting that it originated from interaction between slab-derived melts and overlying peridotite material. Collectively, these data record the subduction of the Enger Us oceanic slab beneath Mesoproterozoic−Neoproterozoic sialic crust, generating a Japan-type arc within the southern Alxa during Middle−Late Permian. Temporal-spatial variations of zircon Hf isotope for plutons suggest tectonic switching from advancing to retreating subduction during Carboniferous−Early Triassic within the southern Alxa. An advancing subduction resulted from the subduction of the Paleo-Asian Ocean, and a retreating subduction was related to plate boundary reorganization during the assembly of Pangea.

2020 ◽  
Vol 133 (1-2) ◽  
pp. 253-276
Author(s):  
Dongfang Song ◽  
Wenjiao Xiao ◽  
Brian F. Windley ◽  
Chunming Han

Abstract The Central Asian Orogenic Belt has long been considered the largest Phanerozoic accretionary orogen in the world; it developed through the subduction and final closure of the Paleo–Asian Ocean. However, the architecture and duration of the accretionary orogenesis of the Central Asian Orogenic Belt are still controversial despite decades of investigation. In this study, we present field, compositional, and stratigraphically controlled detrital zircon geochronological data for late Paleozoic sedimentary rocks from the Alxa Tectonic Belt to constrain their provenance, tectonic setting, and the overall tectonic configuration of the southern Central Asian Orogenic Belt. A Devonian sample yields a unimodal age peak (ca. 424 Ma) and broad late Mesoproterozoic ages. A Carboniferous sample has Early Silurian (ca. 438 Ma) and Late Devonian (ca. 382 Ma) peaks along with Neoproterozoic to Archean ages. The Permian samples are dominated by Ordovician–Devonian and Carboniferous–Permian ages. They yield maximum depositional ages ranging from ca. 291 Ma to 248 Ma and contain abundant zircon ages that are close to their depositional ages. These data reveal Ordovician–Silurian and Carboniferous–Permian magmatic flare-ups separated by a Devonian magmatic lull in the southern Central Asian Orogenic Belt. The arc terranes in southern Mongolia, central Beishan, and northern Alxa provided major detritus for the late Paleozoic sediments. An abrupt shift of zircon εHf(t) values at ca. 400 Ma reveals significant late Paleozoic crustal growth and excludes southern Alxa as a source. Oceanic basins prevented detritus from southern Alxa from reaching northern Alxa during Permian–Early Triassic time. A geological and provenance comparison of Permian basins in the southern Central Asian Orogenic Belt reveals the existence of two separate forearcs ascribed to bipolar subduction of the Paleo–Asian Ocean. Combined with recent paleomagnetic data, this leads us to advocate for an archipelago-style accretionary process induced by subduction retreat for the late Paleozoic tectonic evolution of the southern Central Asian Orogenic Belt, which continued into Late Permian–Early Triassic.


2020 ◽  
Author(s):  
Hai Zhou ◽  
Guochun Zhao ◽  
et al.

Table S1: Summary of the samples and sampling positions in this study (sampling sites are marked in Fig. 3); Table S2: U-Pb age data for zircons of (meta-)sedimentary and volcanic rocks in this study; Table S3: Lu-Hf isotopic data for zircons of (meta-)sedimentary and volcanic rocks in this study.


Author(s):  
Yujian Wang ◽  
Dicheng Zhu ◽  
Chengfa Lin ◽  
Fangyang Hu ◽  
Jingao Liu

Accretionary orogens function as major sites for the generation of continental crust, but the growth model of continental crust remains poorly constrained. The Central Asian Orogenic Belt, as one of the most important Phanerozoic accretionary orogens on Earth, has been the focus of debates regarding the proportion of juvenile crust present. Using published geochemical and zircon Hf-O isotopic data sets for three belts in the Eastern Tianshan terrane of the southern Central Asian Orogenic Belt, we first explore the variations in crustal thickness and isotopic composition in response to tectono-magmatic activity over time. Steady progression to radiogenic zircon Hf isotopic signatures associated with syn-collisional crustal thickening indicates enhanced input of mantle-derived material, which greatly contributes to the growth of the continental crust. Using the surface areas and relative increases in crustal thickness as the proxies for magma volumes, in conjunction with the calculated mantle fraction of the mixing flux, we then are able to determine that a volume of ∼14−22% of juvenile crust formed in the southern Central Asian Orogenic Belt during the Phanerozoic. This study highlights the validity of using crustal thickness and zircon isotopic signatures of magmatic rocks to quantify the volume of juvenile crust in complex accretionary orogens. With reference to the crustal growth pattern in other accretionary orogens and the Nd-Hf isotopic record at the global scale, our work reconciles the rapid crustal growth in the accretionary orogens with its episodic generation pattern in the formation of global continental crust.


2019 ◽  
Vol 56 (4) ◽  
pp. 380-398 ◽  
Author(s):  
Jing-gui Sun ◽  
Yun-peng He ◽  
Ji-long Han ◽  
Zhong-yu Wang

The Wuxing Pt–Pd-rich Cu–Ni sulfide deposit in Heilongjiang Province, Northeast China, is located to the northeast of the Dunhua–Mishan fracture of the eastern Central Asian Orogenic Belt. The mafic–ultramafic complex consist of early-period hornblende–olivine pyroxenite, diopsidite, and hornblende pyroxenite and late-period gabbro and diabase units. An early-period hornblende pyroxenite yielded a zircon U–Pb age of 208.2 ± 2.6 Ma and a late-period diabase yielded a U–Pb age of 205.6 ± 1.1 Ma, with zircon εHf(t) values of +1.24 to +8.13. The early- and late-period lithofacies are relatively enriched in LILE (Rb, Ba, and Sr) and LREE, and variably depleted in HFSE (Nb, Ta). The whole-rock and single-mineral analyses of the early-period lithofacies yield (87Sr/86Sr)i ratios of 0.7055–0.7083 and εNd(t) ratios of −7.98–+3.10. These geochemical data suggest that the parental magmas of the Wuxing complex are high-Mg subalkaline basaltic in nature and were derived from an enriched mantle source. The magmas chamber formed after the injection of magma into the crust along with crustal contamination, producing early crystalline minerals and ore-bearing magmas. The rupturing of the magma chamber released evolved magmas, which then ascended and generated Pt–Pd-bearing lithofacies and Cu–Ni sulfide orebodies by fractional crystallization, accumulation, and liquation. During the late period, the residual magma invaded the early lithofacies and Cu–Ni orebodies. The fluids exsolved from the gabbroic magmas concentrated the mineralized metal elements and enhanced the precipitation of Pt–Pd-bearing veinlet-disseminated orebodies and Pt–Pd–Cu–Ni orebodies.


Sign in / Sign up

Export Citation Format

Share Document